Exercise 4.1.1 (de Polignac's formula)

What is the highest power of 2 dividing 533 ! ? The highest power of 3? The highest power of 6? The highest power of 12 ? The highest power of 70 ?

Answers

Proof.

(a)
Using Theorem 4.1(6), the de Polignac’s formula (Theorem 4.2) gives ν p ( n ! ) = n p + ν p ( n p ! ) . (1)

Here

533 2 = 266 , 266 2 = 133 , 133 2 = 66 , 66 2 = 33 , 33 2 = 16 , 16 2 = 8 , 8 2 = 4 , 4 2 = 2 , 2 2 = 1 .

The sum of these results is

ν 2 ( 533 ! ) = 529 .

(b)
Similarly (see the Python program in the note below), ν 3 ( 533 ! ) = 263 .

(c)
By parts (a) and (b), the decomposition of 533 ! in primes begins with 533 ! = 2 529 3 263 , thus 6 263 533 ! , but 6 264 533 ! . Therefore the highest power of 6 dividing 533 ! is min ( ν 2 ( 533 ! ) , ν 3 ( 533 ! ) ) = ν 3 ( 533 ! ) = 263 .
(d)
Since 533 ! = 2 4 264 3 263 m = 8 1 2 263 m , where m 12 = 1 , the highest power of 12 dividing 533 ! is 263 .
(e)
As in part (c), the highest power of 70 = 2 5 7 dividing 533 ! is min ( ν 2 ( 533 ! ) , ν 5 ( 533 ! ) , ν 7 ( 533 ! ) ) = ν 7 ( 533 ! ) = 87 .

Note: We use the iterative Python program, based on formula (1)

def polignac(n, p):
    som = 0
    N = n
    while N != 0:
        N = N // p
        som += N
    return som

polignac(533, 3)
      263


Recursive version:

def polignac_rec(n, p):
    if n <= 1:
        return 0
    else:
        v = n // p
        return v + polignac_rec(v, p)

The de Polignac’s formula is due to Legendre (1830).

User profile picture
2024-12-10 18:26
Comments