Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 4.1.28* ($\left \lfloor \sqrt{n} + \sqrt{n+1} \right \rfloor = \left \lfloor \sqrt{n} + \sqrt{n+2} \right \rfloor.$)

Exercise 4.1.28* ($\left \lfloor \sqrt{n} + \sqrt{n+1} \right \rfloor = \left \lfloor \sqrt{n} + \sqrt{n+2} \right \rfloor.$)

Prove that of the two equations

n + n + 1 = n + n + 2 , n 3 + n + 1 3 = n 3 + n + 2 3 ,

the first holds for every positive integer n , but the second does not.

Answers

Proof.

(a)
Suppose for the sake of contradiction that n + n + 1 n + n + 2 .

Then there exits a positive integer k such that

n + n + 1 < k n + n + 2 . (1)

(Take k = n + n + 2 . Then k n + n + 2 . If k n + n + 1 , then

k n + n + 1 < n + n + 2 < k + 1 ,

so k = n + n + 1 = n + n + 2 , and this contradicts our hypothesis. Therefore n + n + 1 < k ).

Put r = k 2 4 n , so that r is an integer. By (1), 2 n < n + n + 1 < k , thus r = k 2 4 n > 0 , so r 1 .

We use this expression of k = 4 n + r in inequalities (1):

n + n + 1 < 4 n + r n + n + 2 . (2)

These inequalities are equivalent to

n + 1 < 4 n + r n n + 2 , n + 1 < 5 n + r 2 n ( 4 n + r ) n + 2 , 4 n r + 1 < 2 n ( 4 n + r ) 4 n r + 2 , 4 n + r 2 2 n ( 4 n + r ) < 4 n + r 1 , 16 n 2 + r 2 + 4 + 8 nr 16 n 4 r 16 n 2 + 4 nr < 16 n 2 + r 2 + 1 + 8 nr 8 n 2 r , r 2 + 4 16 n 4 r 4 nr < r 2 + 1 8 n 2 r , 16 n + ( r 2 ) 2 4 nr < 8 n + ( r 1 ) 2 , 8 n ( r 1 ) 2 < 4 nr 16 n ( r 2 ) 2 . ( 3 )

Since 4 nr 16 n ( r 2 ) 2 16 n , we obtain r 4 .

  • If r = 4 , then 4 nr = 16 n > 16 n ( r 2 ) 2 = 16 n 4 . This contradicts (3), therefore r 4 .
  • If r = 1 , then 8 n ( r 1 ) 2 = 8 n > 4 n . This contradicts (3), therefore r 1 .
  • If r = 2 , then k 2 = 4 n + 2 , so k 2 2 ( mod 4 ) . This congruence has no solution, therefore r 2 .
  • If r = 3 , then k 2 = 4 n + 3 , so k 2 3 ( mod 4 ) . This congruence has no solution, therefore r 3 .

This shows that the inequalities (4) are not satisfied for any pair of positive integers n , r . Equivalently, the inequalities (1) are not satisfied for any pair of positive integers n , k . Therefore, for any positive integer n ,

n + n + 1 = n + n + 2 .

(b)
If n = 15 , 15 3 + 16 3 < 4.99 15 3 + 17 3 > 5.03 .

Therefore

15 3 + 16 3 = 4 5 = 15 3 + 17 3

(we obtain similar inequalities for n = 42, 274, 421, …).

So

n 3 + n + 1 3 = n 3 + n + 2 3

is not true for every integer n , □

User profile picture
2025-01-03 10:01
Comments