Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 4.1.29* (Evaluate $\int_0^1 \int_0^1 \int_0^1 \lfloor x + y + z \rfloor dx\, dy\, dz$)

Exercise 4.1.29* (Evaluate $\int_0^1 \int_0^1 \int_0^1 \lfloor x + y + z \rfloor dx\, dy\, dz$)

Evaluate the integral 0 1 0 1 0 1 x + y + z dx dy dz where the square brackets denote the greatest integral function. Generalize to n -dimensions, with an n -fold integral.

Answers

Proof.

(a)
Let f : [ 0 , 1 ] 3 denote the function defined by f ( x , y , z ) = x + y + z .

Then f takes only the values 0 , 1 , 2 , 3 .

Consider the cube ( A , B , C , D , E , F , G , H ) , where

A = ( 0 , 0 , 0 ) , B = ( 1 , 0 , 0 ) , C = ( 1 , 1 , 0 ) , D = ( 0 , 1 , 0 ) , E = ( 0 , 0 , 1 ) , F = ( 1 , 0 , 1 ) , G = ( 1 , 1 , 1 ) , H = ( 0 , 1 , 1 ) .

Put

A k = { ( x , y , z ) [ 0 , 1 ] 3 x + y + z = k } , k = 0 , 1 , 2 , 3 .

The A k are measurable, and f takes only a finite set of values, so f is a simple function (Rudin, Real and complex analysis, p. 15).

We write μ ( A k ) the volume of A k . Note that μ ( A 3 ) = μ ( { ( 1 , 1 , 1 ) } ) = 0 , so

J = 0 1 0 1 0 1 x + y + z d x d y d z = 0 μ ( A 0 ) + 1 μ ( A 1 ) + 2 μ ( A 2 ) .

We note that A 0 is the tetrahedron AEBD , and A 2 the tetrahedron GCHF , which are symmetric relatively to the center of the cube, so μ ( A 0 ) = μ ( A 2 ) . This gives

J = μ ( A 0 ) + μ ( A 1 ) + μ ( A 2 ) = μ ( [ 0 , 1 ] 3 ) = 1 .

(b)
Bizarrely, this trick can be generalized to n -dimensions.

We write f : [ 0 , 1 ] n the function defined by

f ( x 1 , x 2 , , x n ) = x 1 + x 2 + + x n ,

and

A k = { ( x 1 , x 2 , , x n ) [ 0 , 1 ] n x 1 + x 2 + + x n = k } , k = 0 , 1 , 2 , 3 . = { ( x 1 , x 2 , , x n ) [ 0 , 1 ] n k x 1 + x 2 + + x n < k + 1 } .

Then f is a simple function, and

J n = 0 1 0 1 0 1 x 1 + x 2 + + x n d x 1 d x 2 d x n = [ 0 , 1 ] n f d μ = k = 0 n 1 ( A k ) ( μ ( A n ) = 0 ) .

We show that μ ( A k ) = μ ( A n 1 k ) for k = 0 , 1 , , n 1 . We note first that μ ( A k ) = μ ( A k ) , where

A k = { ( x 1 , x 2 , , x n ) [ 0 , 1 ] n k < x 1 + x 2 + + x n < k + 1 } ,

because the set of points ( x 1 , x 2 , , x n ) such that k = x 1 + x 2 + + x n is a zero measure set.

Consider the symmetry φ relative to the center of the hypercube [ 0 , 1 ] n :

φ { [ 0 , 1 ] n [ 0 , 1 ] n ( x 1 , x 2 , , x n ) ( 1 x 1 , 1 x 2 , , 1 x n )

Then, for all ( x 1 , x 2 , , x n ) [ 0 , 1 ] n ,

( x 1 , x 2 , , x n ) A k k < x 1 + x 2 + + x n < k + 1 n k 1 < ( 1 x 1 ) + ( 1 x 2 ) + + ( 1 x n ) < n k φ ( x 1 , x 2 , , x n ) A n 1 k .

Since φ is an isometry, μ ( A k ) = μ ( A n 1 k ) , so

μ ( A k ) = μ ( A n 1 k ) , k = 0 , 1 , , n 1 .

With the trick of the child K.F. Gauss to sum the integers between 1 and 100 , we write

J n = 0 μ ( A 0 ) + 1 μ ( A 1 ) + + ( A k ) + + ( n 1 ) μ ( A n 1 ) J n = ( n 1 ) μ ( A n 1 ) + ( n 2 ) μ ( A n 2 ) + + ( n 1 k ) μ ( A n 1 k ) + + 0 μ ( A 0 ) = ( n 1 ) μ ( A 0 ) + ( n 2 ) μ ( A 1 ) + + ( n 1 k ) μ ( A k ) + + 0 μ ( A n 1 ) .

Therefore

2 J n = ( n 1 ) ( μ ( A 0 ) + μ ( A 1 ) + + μ ( A n 1 ) ) = ( n 1 ) μ ( [ 0 , 1 ] n ) = ( n 1 ) .

So

J n = 0 1 0 1 0 1 x 1 + x 2 + + x n d x 1 d x 2 d x n = n 1 2 .

Check (for n = 4 ):

sage: var(’x y z t’)
(x, y, z, t)
sage: J4 = integral(integral(integral(integral(
    floor(x + y + z + t), x, 0,1), y, 0, 1), z , 0, 1), t, 0, 1)
sage: J4.n()
1.50000000000000

User profile picture
2025-01-04 10:27
Comments