Homepage › Solution manuals › Ivan Niven › An Introduction to the Theory of Numbers › Exercise 4.1.6 (Prove that $\left \lfloor x \right \rfloor + \left \lfloor x + \frac{1}{2}\right \rfloor = \lfloor 2x \rfloor $)
Exercise 4.1.6 (Prove that $\left \lfloor x \right \rfloor + \left \lfloor x + \frac{1}{2}\right \rfloor = \lfloor 2x \rfloor $)
For any real number prove that .
Answers
Proof. We write , where and , so that .
-
If , then
Therefore
thus
-
If , then
Therefore
thus
2024-12-12 09:59