Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 4.1.6 (Prove that $\left \lfloor x \right \rfloor + \left \lfloor x + \frac{1}{2}\right \rfloor = \lfloor 2x \rfloor $)

Exercise 4.1.6 (Prove that $\left \lfloor x \right \rfloor + \left \lfloor x + \frac{1}{2}\right \rfloor = \lfloor 2x \rfloor $)

For any real number x prove that x + x + 1 2 = 2 x .

Answers

Proof. We write x = n + ν , where n and 0 ν < 1 , so that x = n .

  • If 0 ν < 1 2 , then

    n x + 1 2 = n + ν + 1 2 < n + 1 , 2 n 2 x = 2 n + 2 ν < 2 n + 1 .

    Therefore

    x + 1 2 = n , 2 x = 2 n ,

    thus

    x + x + 1 2 = 2 n = 2 x .

  • If 1 2 ν < 1 , then

    n + 1 x + 1 2 = n + ν + 1 2 < n + 2 , 2 n + 1 2 x = 2 n + 2 ν < 2 n + 2 .

    Therefore

    x + 1 2 = n + 1 , 2 x = 2 n + 1 ,

    thus

    x + x + 1 2 = 2 n + 1 = 2 x .

User profile picture
2024-12-12 09:59
Comments