Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 4.1.7 (Prove that $\lfloor x \rfloor \cdot \lfloor y \rfloor \leq \lfloor xy \rfloor$)

Exercise 4.1.7 (Prove that $\lfloor x \rfloor \cdot \lfloor y \rfloor \leq \lfloor xy \rfloor$)

For any positive real numbers x and y prove that x y xy .

Answers

Proof. We write

x = n + ν , n , 0 ν < 1 , y = m + μ , m , 0 μ < 1 ,

so that x = n , y = m . Since x > 0 and y > 0 , n 0 and m 0 .

Then

x y = nm nm + + + νμ = xy .

By definition, xy = max { k k xy } , so we obtain

x y xy .

User profile picture
2024-12-12 10:26
Comments