Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 4.1.8 (If $x>0, y>0$, then $\lfloor x - y \rfloor \leq \lfloor x \rfloor - \lfloor y \rfloor \leq \lfloor x -y \rfloor + 1.$)

Exercise 4.1.8 (If $x>0, y>0$, then $\lfloor x - y \rfloor \leq \lfloor x \rfloor - \lfloor y \rfloor \leq \lfloor x -y \rfloor + 1.$)

For any positive real numbers x and y prove that

x y x y x y + 1 .

Answers

Proof. We write as usual

x = n + ν , n , 0 ν < 1 , y = m + μ , m , 0 μ < 1 ,

so that x = n , y = m .

Then

1 < μ ν μ ν < 1 .

Put η = ν μ . Then η = 0 or η = 1 , and

x y = n m + ν μ = n + m + η ,

thus by Theorem 4.1(3),

x y = n m + η , η { 0 , 1 } .

Then 1 η 0 , thus

n m 1 x y n m ,

that is

x y 1 x y x y ,

which is equivalent to

x y x y x y + 1 .

User profile picture
2024-12-12 11:18
Comments