Homepage › Solution manuals › Ivan Niven › An Introduction to the Theory of Numbers › Exercise 4.1.8 (If $x>0, y>0$, then $\lfloor x - y \rfloor \leq \lfloor x \rfloor - \lfloor y \rfloor \leq \lfloor x -y \rfloor + 1.$)
Exercise 4.1.8 (If $x>0, y>0$, then $\lfloor x - y \rfloor \leq \lfloor x \rfloor - \lfloor y \rfloor \leq \lfloor x -y \rfloor + 1.$)
For any positive real numbers and prove that
Answers
Proof. We write as usual
so that .
Then
Put . Then or , and
thus by Theorem 4.1(3),
Then , thus
that is
which is equivalent to
□