Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 4.2.15 (If $(a,b) > 1$, then $\sigma_k(ab) < \sigma_k(a) \sigma_k(b)$)

Exercise 4.2.15 (If $(a,b) > 1$, then $\sigma_k(ab) < \sigma_k(a) \sigma_k(b)$)

Prove that if ( a , b ) > 1 , then σ k ( ab ) < σ k ( a ) σ k ( b ) and d ( ab ) < d ( a ) d ( b ) .

Answers

Proof. Here k = { 0 , 1 , 2 , , } . We prove first the property for a = p α , b = p β , where p is a prime number.

If a b > 1 , then α > 0 and β > 0 .

  • If k = 0 , then

    σ 0 ( ab ) < σ 0 ( a ) σ 0 ( b ) d ( ab ) < d ( a ) d ( b ) d ( p α + β ) < d ( p α ) d ( p β ) α + β + 1 < ( α + 1 ) ( β + 1 ) 0 < αβ .

    Since α > 0 , β > 0 , 0 < αβ is true, so

    σ 0 ( ab ) < σ 0 ( a ) σ 0 ( b ) ( a = p α , b = p β , α > 0 , β > 0 ) .

  • If k > 0 , then, using the formula of Problem 8,

    σ k ( ab ) < σ k ( a ) σ k ( b ) σ k ( p α + β ) < σ k ( p α ) σ k ( p β ) p k ( α + β + 1 ) 1 p k 1 < p k ( α + 1 ) 1 p k 1 p k ( β + 1 ) 1 p k 1 ( p k ( α + β + 1 ) 1 ) ( p k 1 ) < ( p k ( α + 1 ) 1 ) ( p k ( β + 1 ) 1 ) p k ( α + β + 2 ) p k ( a + β + 1 ) p k + 1 < p k ( α + β + 2 ) p k ( α + 1 ) p k ( β + 1 ) + 1 p k ( α + 1 ) + p k ( β + 1 ) < p k ( α + β + 1 ) p + p < p p ( p 1 ) ( p 1 ) > 1 .

    Since p > 1 , k > 0 and α > 0 , β > 0 , we have p > 1 , p > 1 , so ( p 1 ) ( p 1 ) > 1 . This shows that

    σ k ( ab ) < σ k ( a ) σ k ( b ) ( a = p α , b = p β , α > 0 , β > 0 , k 1 ) .

In conclusion, for all k ,

σ k ( ab ) < σ k ( a ) σ k ( b ) ( a = p α , b = p β , α > 0 , β > 0 ) . (1)

We know that if a b = 1 (that is, if α = 0 or β = 0 ), then σ k ( ab ) = σ k ( a ) σ k ( b ) , so in all cases

σ k ( ab ) σ k ( a ) σ k ( b ) ( a = p α , b = p β ) . (2)

Now we consider positive integers a , b , such that a b > 1 , and k 0 . We write

{ a = p 1 a 1 p 2 a 2 p l a l , b = p 1 b 1 p 2 b 2 p l b l .

where p 1 , p 1 , , p l are the prime divisors of a or b , and a i 0 , b i 0 .

Since a b > 1 , there is some index i such that a i > 0 and b i > 0 . After renumbering, we may suppose that i = 1 , so a 1 > 0 , b 1 > 0 . Then by inequalities (1) and (2),

σ k ( p 1 a 1 + b 1 ) < σ k ( p 1 a 1 ) σ k ( p 1 b 1 ) (3) σ k ( p i a i + b i ) σ k ( p i a i ) σ k ( p i b i ) , i = 2 , , l . (4)

Since σ k is multiplicative, by (3) and (4),

σ k ( ab ) = σ k ( p 1 a 1 + b 1 ) σ k ( p 2 a 2 + b 2 ) σ k ( p l a l + b l ) < σ k ( p 1 a 1 ) σ k ( p 1 b 1 ) σ k ( p 2 a 2 ) σ k ( p 2 a 2 ) σ k ( p l a l ) = σ k ( a ) σ k ( b ) .

In particular, for k = 0 , d ( ab ) = σ 0 ( ab ) < σ 0 ( a ) σ 0 ( b ) = d ( a ) d ( b ) .

If a b > 1 , then σ k ( ab ) < σ k ( a ) σ k ( b ) for k = 1 , 2 , and d ( ab ) < d ( a ) d ( b ) . □

User profile picture
2025-01-15 10:21
Comments