Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 4.3.12 ($\frac{S(n)}{n^2} = \sum_{d \mid n} \frac{1}{6} \mu(d) \left( \frac{2n}{d} + 3 + \frac{d}{n} \right).$)

Exercise 4.3.12 ($\frac{S(n)}{n^2} = \sum_{d \mid n} \frac{1}{6} \mu(d) \left( \frac{2n}{d} + 3 + \frac{d}{n} \right).$)

Combine the results of the two preceding problems to get

d n S ( d ) d 2 = 1 6 ( 2 n + 3 + 1 n ) .

Then apply the Möbius inversion formula to get

S ( n ) n 2 = d n 1 6 μ ( d ) ( 2 n d + 3 + d n ) .

Answers

Proof. Combining the results of the two preceding problems, we get

n 2 d n S ( d ) d 2 = j = 1 n j 2 = n ( n + 1 ) ( 2 n + 1 ) 6 .

Therefore

d n S ( d ) d 2 = ( n + 1 ) ( 2 n + 1 ) 6 n = 1 6 ( 2 n + 3 + 1 n ) .

Put f ( n ) = S ( n ) n 2 for every positive integer n , and F ( n ) = d n f ( d ) . Then F ( n ) = 1 6 ( 2 n + 3 + 1 n ) , and the Möbius inversion formula gives

S ( n ) n 2 = f ( n ) = d n μ ( d ) F ( n d ) = d n μ ( d ) 1 6 ( 2 n d + 3 + d n ) .

So

S ( n ) n 2 = d n 1 6 μ ( d ) ( 2 n d + 3 + d n ) .

User profile picture
2025-01-27 11:09
Comments