Homepage › Solution manuals › Ivan Niven › An Introduction to the Theory of Numbers › Exercise 4.3.12 ($\frac{S(n)}{n^2} = \sum_{d \mid n} \frac{1}{6} \mu(d) \left( \frac{2n}{d} + 3 + \frac{d}{n} \right).$)
Exercise 4.3.12 ($\frac{S(n)}{n^2} = \sum_{d \mid n} \frac{1}{6} \mu(d) \left( \frac{2n}{d} + 3 + \frac{d}{n} \right).$)
Combine the results of the two preceding problems to get
Then apply the Möbius inversion formula to get
Answers
Proof. Combining the results of the two preceding problems, we get
Therefore
Put for every positive integer , and . Then , and the Möbius inversion formula gives
So
□