Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 4.3.14 ($S(n) = n^2 \phi(n)/3 + (-1)^{\omega(n)} \phi(n) s(n)/6$ for $n>1$)

Exercise 4.3.14 ($S(n) = n^2 \phi(n)/3 + (-1)^{\omega(n)} \phi(n) s(n)/6$ for $n>1$)

In the notations of the two preceding problems, show that S ( n ) = n 2 ϕ ( n ) 3 + ( 1 ) ω ( n ) ϕ ( n ) s ( n ) 6 for n > 1 .

Hint. Use (4.1).

Answers

Proof. By Theorem 4.7, if n > 1 ,

d n μ ( d ) = 0 . (1)

The equality (4.1) gives

n d n μ ( d ) d = ϕ ( n ) . (2)

We proved in Problem 13 that

d n ( d ) = ( 1 ) ω ( n ) ϕ ( n ) s ( n ) n . (3)

Starting with the result of Problem 12, using (1), (2) and (3) we obtain for n > 1

S ( n ) = n 2 d n 1 6 μ ( d ) ( 2 n d + 3 + d n ) = n 3 3 d n μ ( d ) d + n 2 2 d n μ ( d ) + n 6 d n ( d ) = n 2 3 ϕ ( n ) + n 6 ( 1 ) ω ( n ) ϕ ( n ) s ( n ) n .

In conclusion, for n > 1 ,

S ( n ) = n 2 ϕ ( n ) 3 + ( 1 ) ω ( n ) ϕ ( n ) s ( n ) 6 ,

that is

j [ [ 1 , n ] ] , j n = 1 j 2 = 1 6 ϕ ( n ) ( 2 n 2 + ( 1 ) ω ( n ) p n p ) .

User profile picture
2025-01-27 15:38
Comments