Homepage › Solution manuals › Ivan Niven › An Introduction to the Theory of Numbers › Exercise 4.3.15* ( $\mu(n+1) = \mu(n+2) = \mu(n+3) = \cdots = \mu(n+k).$)
Exercise 4.3.15* ( $\mu(n+1) = \mu(n+2) = \mu(n+3) = \cdots = \mu(n+k).$)
Given any positive integer , prove that there exist infinitely many integers such that
Answers
Proof. By Problem 2.3.18, for any positive integer , there are consecutive integers which are not square-free, say , where
and is the th prime number.
Then
Moreover, if , , then
There exist infinitely many integers such that
□
Example: We obtain such that with Sagemath.
sage: k = 100 sage: residues = [-i for i in range(1, k + 1)] sage: moduli = [nth_prime(i)^2 for i in range(1, k + 1)] sage: n = crt(residues, moduli); n 2028519938484645749139755369116060455678748407443319354737460070073924492819785 4040382614695687706408740206868628498272793718588896202223910231463399215573873 9012381727960514850058588890854654083644895991303964587404471780374260311538323 6857566704853860107939976936867759161606950484378691662341830612904337714320818 8508900267290633971736704641930711015662384249431378593012253349604837712376159 999392740948376596612422028902589512942936547 sage: print([moebius(n + i) for i in range(1, k + 1)]) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Here .