Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 4.3.15* ( $\mu(n+1) = \mu(n+2) = \mu(n+3) = \cdots = \mu(n+k).$)

Exercise 4.3.15* ( $\mu(n+1) = \mu(n+2) = \mu(n+3) = \cdots = \mu(n+k).$)

Given any positive integer k , prove that there exist infinitely many integers n such that

μ ( n + 1 ) = μ ( n + 2 ) = μ ( n + 3 ) = = μ ( n + k ) .

Answers

Proof. By Problem 2.3.18, for any positive integer k , there are k consecutive integers which are not square-free, say n + 1 , n + 2 , , n + k , where

n 1 ( mod p 1 2 ) , n 2 ( mod p 2 2 ) , n k ( mod p k 2 ) .

and p n is the n th prime number.

Then

μ ( n + 1 ) = μ ( n + 2 ) = μ ( n + 3 ) = = μ ( n + k ) = 0 .

Moreover, if m = n + λ p 1 2 p 2 2 p k 2 n ( mod p i 2 ) , i = 1 , , k , λ 0 , then

μ ( m + 1 ) = μ ( m + 2 ) = μ ( m + 3 ) = = μ ( m + k ) = 0 .

There exist infinitely many integers n such that

μ ( n + 1 ) = μ ( n + 2 ) = μ ( n + 3 ) = = μ ( n + k ) .

Example: We obtain n such that μ ( n + 1 ) = μ ( n + 2 ) = μ ( n + 3 ) = = μ ( n + 100 ) = 0 with Sagemath.

sage: k = 100

sage: residues = [-i for i in range(1, k + 1)]

sage: moduli   = [nth_prime(i)^2 for i in range(1, k + 1)]

sage: n = crt(residues, moduli); n

2028519938484645749139755369116060455678748407443319354737460070073924492819785
4040382614695687706408740206868628498272793718588896202223910231463399215573873
9012381727960514850058588890854654083644895991303964587404471780374260311538323
6857566704853860107939976936867759161606950484378691662341830612904337714320818
8508900267290633971736704641930711015662384249431378593012253349604837712376159
999392740948376596612422028902589512942936547

sage: print([moebius(n + i) for i in range(1, k + 1)])

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0]

Here n 2 1 0 439 .

User profile picture
2025-01-28 07:59
Comments