Exercise 4.3.21 (Variations on Möbius)

Let N be a positive integer, and suppose that f and F are arithmetic functions. Show that the following assertions are equivalent:

( i ) F ( n ) = m = 1 n m N f ( m )  for all  n . ( ii ) f ( n ) = m = 1 n m N μ ( m n ) F ( m )  for all  n .

Answers

Proof.

  • Suppose that for all positive integers n ,

    F ( n ) = m [ [ 1 , N ] ] , n m f ( m ) = 1 k N n f ( kn ) ( m = kn ) .

    Then

    m [ [ 1 , N ] ] , n m μ ( m n ) F ( m ) = 1 l N n μ ( l ) F ( ln ) ( m = ln ) = 1 l N n μ ( l ) 1 k N ( ln ) f ( kln ) = 1 l N n 1 k N ( ln ) μ ( l ) f ( kln ) = 1 kl N n μ ( l ) f ( kln ) ,

    because

    ( 1 l N n , 1 k N ( ln ) ) 1 kl N n .

    Next

    m [ [ 1 , N ] ] , n m μ ( m n ) F ( m ) = 1 kl N n μ ( l ) f ( kln ) = 1 j N n kl = j μ ( l ) f ( kln ) = 1 j N n f ( jn ) l j μ ( l ) = 1 j N n f ( jn ) δ ( j ) = f ( n ) ,

    where by Theorem 4.7, l j μ ( l ) = δ ( j ) = { 1 if  j = 1 0 otherwise.

  • Conversely, suppose that for all positive integers n ,

    f ( n ) = m [ [ 1 , N ] ] , n m μ ( m n ) F ( m ) = 1 l N n μ ( l ) F ( ln ) ( m = ln ) .

    Then

    m [ [ 1 , N ] ] , n m f ( m ) = 1 k N n f ( kn ) = 1 k N n 1 l N ( kn ) μ ( l ) F ( kln ) = 1 kl N n μ ( l ) F ( kln ) = 1 j N n kl = j μ ( l ) F ( kln ) = 1 j N n F ( jn ) l j μ ( l ) = 1 j N n F ( jn ) δ ( j ) = F ( n ) .

    In conclusion, the following assertions are equivalent:

    ( i ) n , F ( n ) = m [ [ 1 , N ] ] , n m f ( m ) . ( ii ) n , f ( n ) = m [ [ 1 , N ] ] , n m μ ( m n ) F ( m ) .
User profile picture
2025-01-30 09:40
Comments