Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 4.4.25* ($\lfloor(1 + \sqrt{3})^{2n} \rfloor + 1$ and $\lfloor(1 + \sqrt{3})^{2n+1} \rfloor$ are divisible by $2^{n+1}$)

Exercise 4.4.25* ($\lfloor(1 + \sqrt{3})^{2n} \rfloor + 1$ and $\lfloor(1 + \sqrt{3})^{2n+1} \rfloor$ are divisible by $2^{n+1}$)

Show that ( 1 + 3 ) 2 n + 1 and ( 1 + 3 ) 2 n + 1 are both divisible by 2 n + 1 . Are they divisible by any higher power of 2 ?

Answers

Proof.

(a)
Consider the sequence ( V n ) n defined by V 0 = 2 , V 1 = 2 , n , V n + 2 = 2 ( V n + 1 + V n ) .

The roots of the characteristic polynomial p ( x ) = x 2 2 x 2 are

α = 1 + 3 , β = 1 3 .

By theorem 4.10,

V n = ( 1 + 3 ) n + ( 1 3 ) n = α n + β n .

We note that 1 < 1 3 < 0 , thus 0 < ( 1 3 ) 2 n < 1 and 1 < ( 1 3 ) 2 n + 1 < 0 . Therefore

( 1 + 3 ) 2 n < ( 1 + 3 ) 2 n + ( 1 3 ) 2 n < ( 1 + 3 ) 2 n + 1 , ( 1 + 3 ) 2 n + 1 1 < ( 1 + 3 ) 2 n + 1 + ( 1 3 ) 2 n + 1 < ( 1 + 3 ) 2 n + 1 ,

so

V 2 n 1 < ( 1 + 3 ) 2 n < V 2 n , V 2 n + 1 < ( 1 + 3 ) 2 n + 1 < V 2 n + 1 + 1 .

This shows that

( 1 + 3 ) 2 n + 1 = V 2 n , ( 1 + 3 ) 2 n + 1 = V 2 n + 1 .

It remains to show by induction that 2 n + 1 V 2 n and 2 n + 1 V 2 n + 1 . Consider the proposition

𝒫 ( n ) : 2 n + 1 V 2 n  and  2 n + 1 V 2 n + 1 .

  • First 2 V 0 = 2 and 2 V 1 = 2 , so 𝒫 ( 0 ) is true.
  • Suppose now that 𝒫 ( n ) is true for some integer n 0 . Then 2 n + 1 V 2 n and 2 n + 1 V 2 n + 1 . Therefore

    2 n + 2 V 2 n + 2 = 2 ( V 2 n + 1 + V 2 n ) ,

    and

    2 n + 2 V 2 n + 3 = 2 ( V 2 n + 2 + V 2 n + 1 ) .

    Then 𝒫 ( n + 1 ) is true, and the induction is done.

  • In conclusion,

    n , { 2 n + 1 V 2 n = ( 1 + 3 ) 2 n + 1 2 n + 1 V 2 n + 1 = ( 1 + 3 ) 2 n + 1 .

(b)
As counterexamples, 2 3 V 2 = V 2 1 = 8 , and 2 5 V 6 = V 2 3 = 416 = 32 13 , so for some values of the indices 2 n , V 2 n is divisible by a higher power of 2 than 2 n + 1 (perhaps it is the answer waited by NZM, but we can prove a little more).

After some experiment (see the note below), we conjecture that

{ ν 2 ( V 2 n ) = n + 1 + χ ( n ) , ν 2 ( V 2 n + 1 ) = n + 1 ,

where

χ ( n ) = { 1 if  n  is odd , 0 if  n  is even .

(We cannot prove this property by induction.)

Since 2 n + 1 V 2 n and 2 n + 1 V 2 n + 1 by part (a), we can consider the two sequences ( S n ) n , ( T n ) n with integer values, defined by

S n = V 2 n 2 n + 1 , T n = V 2 n + 1 2 n + 1 .

Since V 2 n + 2 = 2 V 2 n + 1 + 2 V 2 n and

V 2 n + 3 = 2 V 2 n + 2 + 2 V 2 n + 1 = 2 ( 2 V 2 n + 1 + 2 V 2 n ) + 2 V 2 n + 1 = 6 V 2 n + 1 + 4 V 2 n ,

we obtain

V 2 n + 2 2 n + 2 = V 2 n + 1 2 n + 1 + V 2 n 2 n + 1 , V 2 n + 3 2 n + 2 = 3 V 2 n + 1 2 n + 1 + 2 V 2 n 2 n + 1 ,

that is

S n + 1 = S n + T n T n + 1 = 2 S n + 3 T n ,

so

( S n + 1 T n + 1 ) = ( 1 1 2 3 ) ( S n T n ) , ( S 0 T 0 ) = ( 1 1 ) . (1)

The characteristic polynomial of A = ( 1 1 2 3 ) is

p A ( x ) = | 1 x 1 2 3 x | = x 2 4 x + 1 = ( x 2 ) 2 3 ,

By (1), for all n ,

( S n T n ) = A n ( 1 1 ) . (2)

The Cayley-Hamilton Theorem gives A 2 = 4 A I , thus A n + 2 = 4 A n + 1 A n , and (2) shows that for all n ,

S n + 2 = 4 S n + 1 S n , S 0 = 1 , S 1 = 2 , T n + 2 = 4 T n + 1 T n , T 0 = 1 , T 1 = 5 .

Since T n + 2 T n ( mod 2 ) for all n , where T 0 T 1 1 ( mod 2 ) , then T n 1 ( mod 2 ) , thus T n is odd for every index n , and V 2 n + 1 = 2 n + 1 T n . This proves that

ν 2 ( V 2 n + 1 ) = n + 1 .

Moreover S n + 2 S n ( mod 4 ) , and S 0 1 , S 1 2 ( mod 4 ) , thus S 2 n ( 1 ) n ( mod 4 ) and S 2 n + 1 2 ( 1 ) n ( mod 4 ) , so S 2 n = 4 k + ( 1 ) n , where k is an integer, is odd and S 2 n + 1 = 4 k + 2 ( 1 ) n = 2 ( 2 k + ( 1 ) n ) is twice an odd integer.

Since V 2 n = S n 2 n + 1 , ν 2 ( V 2 n ) = n + 1 if n is even, and ν 2 ( V 2 n ) = n + 2 if n is odd.

In conclusion,

{ ν 2 ( V 2 n ) = n + 1 + χ ( n ) , ν 2 ( V 2 n + 1 ) = n + 1 ,

where

χ ( n ) = { 1 if  n  is odd , 0 if  n  is even .

Note: We give the verification of these results with Python.

def nu2(n):
    counter = 0
    while n % 2 == 0:
        n //= 2
        counter += 1
    return counter

def V(n):
    V0, V1 = 2, 2
    for i in range(n):
        V0, V1 = V1, 2*(V0 + V1)
    return V0

[nu2(V(2*i+1)) for i in range(11)]
     [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

[nu2(V(2*i)) for i in range(11)]
     [1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11]

User profile picture
2025-03-06 09:29
Comments