Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 4.4.3 ($\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} < F_{n+1} < \left(\frac{1+\sqrt{5}}{2} \right)^{n}$)

Exercise 4.4.3 ($\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} < F_{n+1} < \left(\frac{1+\sqrt{5}}{2} \right)^{n}$)

Prove that the Fibonacci numbers satisfiy the inequalities

( 1 + 5 2 ) n 1 < F n + 1 < ( 1 + 5 2 ) n .

Answers

Proof. The right inequality is false for n = 0 , and the left inequality is false for n = 1 , so we assume that n 2 .

Put

λ = 1 5 2 , μ = 1 + 5 2 .

Then 1 < λ < 0 , 1 < μ , and by (4.6),

F n + 1 = μ n + 1 λ n + 1 μ λ .

Therefore

F n + 1 < ( 1 + 5 2 ) n μ n + 1 λ n + 1 μ λ < μ n μ n + 1 λ n + 1 < μ n + 1 λ μ n ( since  μ λ > 0 ) λ μ n < λ n + 1 λ ( μ n λ n ) < 0 λ F n < 0 ( since  μ λ > 0 ) λ < 0 ( since  F n > 0  if  n 1 ) .

Since λ < 0 is true, we obtain F n + 1 < ( 1 + 5 2 ) n if n > 0 .

Since λ , μ are the roots of the polynomial x 2 x 1 , λ 2 = λ + 1 , μ 2 = μ + 1 , thus λ 2 = λ μ + μ 2 . This gives

( 1 + 5 2 ) n 1 < F n + 1 μ n 1 < μ n + 1 λ n + 1 μ λ μ n λ μ n 1 < μ n + 1 λ n + 1 ( μ λ > 0 ) λ n + 1 < μ n 1 ( λ μ + μ 2 ) λ n + 1 < μ n 1 λ 2 ( λ μ ) n 1 < 1 .

Since | λ μ | < 1 , ( λ μ ) n 1 | λ μ | n 1 < 1 if n > 1 , thus the preceding inequalities are all true.

n , n 2 ( 1 + 5 2 ) n 1 < F n + 1 < ( 1 + 5 2 ) n .

User profile picture
2025-02-04 10:33
Comments