Exercise 4.4.6 ($F_{n+1} F_{n-1} - F_n^2 = (-1)^n$)

Prove that F n + 1 F n 1 F n 2 = ( 1 ) n .

Answers

First proof.

Proof. Put

λ = 1 5 2 , μ = 1 + 5 2 ,

the roots of the polynomial x 2 x 1 . Then λ + μ = 1 , λμ = 1 .

By (4.6),

F n + 1 F n 1 F n 2 = μ n + 1 λ n + 1 μ λ μ n 1 λ n 1 μ λ ( μ n λ n μ λ ) 2 = 1 ( μ λ ) 2 [ ( μ n + 1 λ n + 1 ) ( μ n 1 λ n 1 ) ( μ n λ n ) 2 ] = 1 ( μ λ ) 2 ( 2 λ n μ n λ n + 1 μ n 1 λ n 1 μ n + 1 ) = ( λμ ) n 1 ( μ λ ) 2 ( 2 λμ λ 2 μ 2 ) = ( λμ ) n 1 = ( 1 ) n .

Second proof.

Proof. Put A = ( 0 1 1 1 ) , and X n = ( F n F n + 1 ) . Then, for all n ,

X n + 1 = ( F n + 1 F n + 2 ) = ( 0 1 1 1 ) ( F n F n + 1 ) = A X n .

Thus

( F n F n + 1 F n + 1 F n + 2 ) = ( 0 1 1 1 ) ( F n 1 F n F n F n + 1 ) .

We define V n = ( F n 1 F n F n F n + 1 ) for all n . Then V n + 1 = A V n , so V n = A n 1 V 1 for all n 1 , where

V 1 = ( F 0 F 1 F 1 F 2 ) = ( 0 1 1 1 ) = A .

Therefore, for all n , V n = A n , that is

V n = ( F n 1 F n F n F n + 1 ) = ( 0 1 1 1 ) n = A n .

Taking the determinants, we obtain det ( V n ) = det ( A ) n , where det ( A ) = 1 , so for all positive integers n ,

F n + 1 F n 1 F n 2 = ( 1 ) n .

User profile picture
2025-02-06 09:27
Comments