Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 5.3.10 ($x^2 + y^2 = z^4$ has infinitely many solutions with $(x,y,z) = 1$)

Exercise 5.3.10 ($x^2 + y^2 = z^4$ has infinitely many solutions with $(x,y,z) = 1$)

Prove that x 2 + y 2 = z 4 has infinitely many solutions with ( x , y , z ) = 1 .

Answers

Proof. We search only the solutions ( x , y , z ) such that x is odd. By Problem 7,

x 2 = ( x 2 + 1 2 ) 2 ( x 2 1 2 ) 2 .

We obtain solutions of x 2 + y 2 = z 4 (where y = x 2 1 2 ) if x 2 + 1 2 = z 2 , that is if

x 2 2 z 2 = 1 . (1)

Note that z 2 y = x 2 + 1 2 x 2 1 2 = 1 , thus y z = 1 , a fortiori x y z = 1 .

It remains to prove that (1) has infinitely many solutions such that x is odd.

First ( 1 , 1 ) is such a solution. If ( u , v ) is a solution of the Pell-Fermat equation

u 2 2 v 2 = 1 , (2)

then

1 = ( 1 2 2 1 2 ) ( u 2 2 v 2 ) = [ ( 1 2 ) ( 1 + 2 ) ] [ ( u v 2 ) ( 1 + v 2 ) ] = [ ( 1 2 ) ( u v 2 ) ] [ ( 1 + 2 ) ( 1 + v 2 ) ] = [ ( u + 2 v ) 2 ( u + v ) ] [ ( u + 2 v ) + 2 ( u + v ) ] = ( u + 2 v ) 2 2 ( u + v ) 2 .

This shows that ( x , z ) = ( u + 2 v , u + v ) is also a solution of (1), and x is odd if and only if u is odd.

Note that ( u 0 , v 0 ) = ( 3 , 2 ) is a solution of (2). If ( u , v ) is a solution of (2), with u odd, we have similarly

1 = ( 3 2 2 2 2 ) ( u 2 2 v 2 ) = [ ( 3 2 2 ) ( 3 + 2 2 ) ] [ ( u v 2 ) ( u + v 2 ) ] = [ ( 3 2 2 ) ( u v 2 ) ] [ ( 3 + 2 2 ) ( u + v 2 ) ] = [ ( 3 u + 4 v ) 2 ( 2 u + 3 v ) ] [ ( 3 u + 4 v ) + 2 ( 2 u + 3 v ) ] = ( 3 u + 4 v ) 2 2 ( 2 u + 3 v ) 2 ,

so ( 3 u + 4 v , 2 u + 3 v ) is a solution of (2), where 3 u + 4 v is odd. Starting from the solution ( u 0 , v 0 ) = ( 1 , 0 ) of (2), we obtain recursively the solutions ( u n , v n ) given by

( u n + 1 , v n + 1 ) = ( 3 u n + 4 v n , 2 u n + 3 v n ) .

Note that by easy induction u n > 0 , v n > 0 for all n , thus u n + 1 > 3 u n for all n . This prove that these solutions are distinct.

Finally, we obtain the solution ( x n , z n ) of (1), given by

( x n , z n ) = ( u n + 2 v n , u n + v n ) .

Since z n + 1 = u n + 1 + v n + 1 = ( 3 u n + 4 v n ) + ( 2 u n + 3 v n ) = 5 u n + 7 v n > u n + v n = z n , these solutions are distinct. There are infinitely many solutions ( x n , z n ) of (1) such that x n is odd, therefore the equation x 2 + y 2 = z 4 has infinitely many solutions with x y z = 1 . □

Verification with Python:

def solution(n):
    (u, v) = (1, 0)
    for i in range(n):
        x = u + 2 * v
        y = (x * x - 1) // 2
        z = u + v
        (u, v ) = (3 * u + 4 * v, 2 * u + 3 * v)
        yield (x, y, z)

for sol in solution(10):
    (x, y, z) = sol
    print(sol, ’=>’,  x ** 2 + y ** 2 - z ** 4)

(1, 0, 1) => 0
(7, 24, 5) => 0
(41, 840, 29) => 0
(239, 28560, 169) => 0
(1393, 970224, 985) => 0
(8119, 32959080, 5741) => 0
(47321, 1119638520, 33461) => 0
(275807, 38034750624, 195025) => 0
(1607521, 1292061882720, 1136689) => 0
(9369319, 43892069261880, 6625109) => 0

User profile picture
2025-04-06 17:01
Comments