Exercise 5.3.15* (Nearly isosceles Pythagorean triangle)

Prove that no Pythagorean triple of integers belongs to an isosceles right triangle, but that there are infinitely many primitive Pythagorean triples for which the acute angles of the corresponding triangles are, for any given positive 𝜀 , within 𝜀 of π 4 .

Answers

Proof. If a Pythagorean triple of integers ( x , y , z ) ( 0 , 0 , 0 ) belongs to an isosceles right triangle, then x = y , so 2 x 2 = z 2 , where x 0 , otherwise ( x , y , z ) = ( 0 , 0 , 0 ) . Therefore 2 = z x . This is impossible, because 2 is an irrational number. This shows that no Pythagorean triple of integers belongs to an isosceles right triangle.

We prove that there are infinitely many primitive positive Pythagorean triples ( x , y , z ) such that y = x 1 . By Theorem 5.5, there are positive integers r , s such that

x = r 2 s 2 , y = 2 rs , z = r 2 + s 2 .

So

y = x 1 2 rs = r 2 s 2 1 r 2 s 2 2 rs = 1 ( r s ) 2 2 s 2 = 1 .

Put t = r s , so that r = s + t . The equation ( r s ) 2 2 s 2 = 1 becomes the Pell-Fermat equation

t 2 2 s 2 = 1 .

We have proved in Problem 10 that this equation has infinitely many solutions ( t n , s n ) , given by

( t 0 , s 0 ) = ( 1 , 0 ) ( t n + 1 , s n + 1 ) = ( 3 t n + 4 s n , 2 t n + 3 s n )

for all n . Then r n = s n + t n satisfies ( r n s n ) 2 2 s n 2 = 1 , thus ( x n , y n , z n ) = ( r n 2 s n 2 , 2 r n s n , r n 2 + s n 2 ) is a Pythagorean triple.

Note that t 0 = 1 is odd, and s 0 = 0 is even. If we suppose that t n is odd, and s n even, then t n + 1 = 3 t n + 4 s n is odd, and s n + 1 = 2 t n + 3 s n is even. This shows by induction that for all n ,

t n 1 ( mod 2 ) , s n 0 ( mod 2 ) .

Now we prove that ( x n , y n , z n ) is a primitive Pythagorean triple. Indeed, t n s n = 1 , because t n 2 2 s n 2 = 1 . Since r n = s n + t n , we obtain r n s n = 1 . If p is a prime divisor of x n and z n , then p r n 2 s n 2 and p r n 2 + s n 2 , thus p 2 r n 2 and p 2 s n 2 , thus p ( 2 r n 2 ) ( 2 s n 2 ) = 2 ( r n 2 s n 2 ) = 2 , so p = 2 . This is impossible, because r n = s n + t n is odd, s n is even, therefore p = 2 cannot divide the odd integer r n 2 s n 2 . This shows that x n z n = 1 , a fortiori x n y n z n = 1 , so ( x n , y n , z n ) is a primitive Pythagorean triple, with x n > 0 , y n > 0 , z n > 0 if n 1 , satisfying y n = x n 1 .

The acute angles of the corresponding triangles are α n and π 2 α n , where

α n = arctan ( y n x n ) = arctan ( 1 1 x n ) .

Since t n + 1 > 3 t n , lim n t n = + , thus lim n r n = + . Moreover r n s n = t n 1 , thus x n = r n 2 s n 2 = ( r n s n ) ( r n + s n ) r n + s n > r n , thus

lim n x n = 1 .

Hence

lim n α n = arctan ( 1 1 x n ) = arctan 1 = π 4 , lim n ( π 2 α n ) = π 4 .

if 𝜀 is given, there exists an integer N such that for every n N , | π 4 α n | < 𝜀 .

So there are infinitely many primitive Pythagorean triples for which the acute angles of the corresponding triangles are, for any given positive 𝜀 , within 𝜀 of π 4 . □

Note: We give the first nearly isosceles Pythagorean triangles with python, following the preceding formulas.

from math import atan, pi
print(pi/4)
     0.7853981633974483

(t,s) = (1, 0)
for i in range(16):
    r = s + t
    x = r * r - s * s
    y = 2 * r * s
    z = r * r + s * s
    (t, s) = (3 * t + 4 * s, 2 * t + 3 * s)
    print ((x, y, z), ’=>\t\t’, atan(y/x))

(1, 0, 1) => 0.0
(21, 20, 29) => 0.7610127542247298
(697, 696, 985) => 0.7846802884310315
(23661, 23660, 33461) => 0.7853770311305932
(803761, 803760, 1136689) => 0.7853975413215937
(27304197, 27304196, 38613965) => 0.7853981450852449
(927538921, 927538920, 1311738121) => 0.7853981628583874
(31509019101, 31509019100, 44560482149) => 0.7853981633815799
(1070379110497, 1070379110496, 1513744654945) => 0.7853981633969812
(36361380737781, 36361380737780, 51422757785981) => 0.7853981633974345
(1235216565974041, 1235216565974040, 1746860020068409) => 0.785398163397448
(41961001862379597, 41961001862379596, 59341817924539925) => 0.7853981633974483
(1425438846754932241, 1425438846754932240, 2015874949414289041) => 0.7853981633974483
(48422959787805316581, 48422959787805316580, 68480406462161287469) => 0.7853981633974483
(1644955193938625831497, 1644955193938625831496, 2326317944764069484905) => 0.7853981633974483
(55880053634125472954301, 55880053634125472954300, 79026329715516201199301) => 0.7853981633974483

User profile picture
2025-04-10 10:41
Comments