Exercise 5.4.1 (Equation $x^2 + y^2 = 9z+3$)

Show that the equation x 2 + y 2 = 9 z + 3 has no integral solution.

Answers

Proof. If reduced modulo 9 , this equation has no solution: for all integers x , y ,

x 2 0 , 1 , 4 , 7 ( mod 9 ) ,

thus

x 2 + y 2 0 , 1 , 2 , 4 , 5 , 7 , 8 ( mod 9 ) .

Therefore the congruence

x 2 + y 2 3 ( mod 9 )

has no solution, thus

x 2 + y 2 = 9 z + 3

has no integral solution. □

With Sagemath:

sage: a = set()
sage: for x in Integers(9):
....:     for y in Integers(9):
....:         a.add(x^2 + y^2)
....:
sage: a
{0, 1, 2, 4, 5, 7, 8}

User profile picture
2025-04-16 07:42
Comments