Exercise 5.4.2 (Equation $x^2 + 2y^2 = 8z+5$ )

Show that the equation x 2 + 2 y 2 = 8 z + 5 has no integral solution.

Answers

Proof. If we reduce this equation modulo 8, we obtain no solution: for all integers x , y ,

x 2 0 , 1 , 4 ( mod 8 ) , 2 y 2 0 , 2 ( mod 8 ) ,

thus

x 2 + 2 y 2 0 , 1 , 2 , 3 , 4 , 6 ( mod 8 ) .

Therefore

x 2 + 2 y 2 5 ( mod 8 ) .

This shows that the equation

x 2 + 2 y 2 = 8 z + 5

has no integral solution. □

With Sagemath:

sage: A = set()
sage: for x in Integers(8):
....:     for y in Integers(8):
....:         A.add(x^2 + 2 * y^2)
....:
sage: A
{0, 1, 2, 3, 4, 6}

User profile picture
2025-04-16 07:44
Comments