Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 5.4.3 (Equation $(x^2 + y^2)^2 - 2(3x^2-5y^2)^2 = z^2$ )

Exercise 5.4.3 (Equation $(x^2 + y^2)^2 - 2(3x^2-5y^2)^2 = z^2$ )

Show that the equation ( x 2 + y 2 ) 2 2 ( 3 x 2 5 y 2 ) 2 = z 2 has no integral solution.

Hint: Remove powers of 2 common to x and y , then argue ( mod 16 ) .

Answers

Proof. Suppose for the sake of contradiction that the integers x , y satisfy ( x 2 + y 2 ) 2 2 ( 3 x 2 5 y 2 ) 2 = z 2 .

Let k be the largest integer such that 2 k x and 2 k y , so that x = 2 k u , y = 2 k v for suitable integers u , v . Then 2 k + 1 x or 2 k + 1 y , thus 2 u or 2 v , so u or v is odd (perhaps both).

Since 2 k x and 2 k y , then 2 4 k z 2 , hence 2 2 k z . Thus z = 2 2 k w for some integer w . This gives

( ( 2 k u ) 2 + ( 2 k v ) 2 ) 2 2 ( 3 ( 2 k u ) 2 5 ( 2 k v ) 2 ) 2 = ( 2 2 k w ) 2 .

Simplifying by 2 4 k , we obtain

( u 2 + v 2 ) 2 2 ( 3 u 2 5 v 2 ) 2 = w 2 ,

where u or v is odd.

For all integers v ,

v 2 0 , 1 , 4 , 9 ( mod 16 ) ,

and if u is odd,

u 2 1 , 9 ( mod 16 ) .

  • If u is odd,

    ( u 2 + v 2 ) 2 2 ( 3 u 2 5 v 2 ) 2 7 , 12 , 15 ( mod 16 ) (1)
  • If v is odd,

    ( u 2 + v 2 ) 2 2 ( 3 u 2 5 v 2 ) 2 7 , 12 , 15 ( mod 16 ) (2)

But 7 , 12 , 15 are not squares modulo 16 , hence the equation ( x 2 + y 2 ) 2 2 ( 3 x 2 5 y 2 ) 2 = z 2 has no integral solution. □

With Sagemath:

A = set()
for v in range(16):
        for u in range(16):
            if u % 2 == 1 or v % 2 == 1:
                A.add((Mod(u,16)^2 + Mod(v, 16)^2)^2
                      -2*(3 * Mod(u,16)^2 - 5 * Mod(v, 16)^2)^2)
A

       {7, 12, 15}

User profile picture
2025-04-16 07:46
Comments