Exercise 5.4.6 (Equation $x^3 + 2y^3 + 4z^3 = 6xyz$)

Show that if x 3 + 2 y 3 + 4 z 3 6 xyz ( mod 7 ) , then x y z 0 ( mod 7 ) . Deduce that the equation x 3 + 2 y 3 + 4 z 3 = 6 xyz has no nontrivial integral solution.

Answers

Proof. ( 0 ¯ , 0 ¯ , 0 ¯ ) is the only solution of x 3 + 2 y 3 + 4 z 3 = 6 xyz in 7 . The 343 verifications are done by Sagemath:

sage: l = []
....: for x in Integers(7):
....:     for y in Integers(7):
....:         for z in Integers(7):
....:             if x^3 + 2 * y^3 + 4 * z^3 == 6 * x * y * z:
....:                 l.append((x,y,z))
....: l
....:
[(0, 0, 0)]

If x 3 + 2 y 3 + 4 z 3 6 xyz ( mod 7 ) , then x y z 0 ( mod 7 ) .

Suppose now that ( x , y , z ) 3 { ( 0 , 0 , 0 ) } satisfies x 3 + 2 y 3 + 4 z 3 = 6 xyz . Since x , y , z are not all zero, d = x y z 0 . put X = x d , Y = y d , Z = z d . Then

X 3 + Y 3 + Z 3 = 6 XY Z , where  X Y Z = 1 .

By the first part, X Y Z 0 ( mod 7 ) . Therefore 7 X Y Z = 1 , which is impossible. This contradiction shows that the equation x 3 + 2 y 3 + 4 z 3 = 6 xyz has no integral solution ( x , y , z ) ( 0 , 0 , 0 ) . □

User profile picture
2025-04-16 09:13
Comments