Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 5.5.2 (Find $c$ such that the equation $-7x^2 + 15y^2 + cz^2 = 0$ has a nontrivial integral solution)

Exercise 5.5.2 (Find $c$ such that the equation $-7x^2 + 15y^2 + cz^2 = 0$ has a nontrivial integral solution)

What is the least positive square-free integer c such that ( c , 105 ) = 1 , and such that the equation 7 x 2 + 15 y 2 + c z 2 = 0 has a nontrivial integral solution.

Answers

Proof. Put a = 7 , b = 15 . If c = 13 , then c a = c b = 1 , so c 105 = 1 , thus abc is square-free.

  • bc = 195 1 2 ( mod 7 ) ,
  • ca = 91 1 2 ( mod 15 ) ,
  • ab = 105 1 2 ( mod 13 ) ,

then Lagrange’s theorem shows that 7 x 2 + 15 y 2 + c z 2 = 0 has a nontrivial integral solution (for instance ( 7 , 3 , 4 ) ).

For no value of c less that 13 , 7 x 2 + 15 y 2 + c z 2 = 0 has a nontrivial integral solution, as verified with this Sagemath program:

a, b = -7, 15
c = 0
not_found = True
while not_found:
    c += 1
    if gcd(c, 105) == 1 and c.is_squarefree():
        (u, v, w) = (Mod(- b * c, a), Mod(- c * a, b), Mod(- a * b, c))
        if u.is_square() and v.is_square() and w.is_square():
            not_found = False
c
          13

(The next suitable value is c = 73 .) □

User profile picture
2025-04-27 09:05
Comments