Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 5.5.3 (Equation $3x^2 + 5y^2 + 7y^2 + 9xy + 11 yz + 13 zx = 0$)

Exercise 5.5.3 (Equation $3x^2 + 5y^2 + 7y^2 + 9xy + 11 yz + 13 zx = 0$)

Determine whether the equation

3 x 2 + 5 y 2 + 7 y 2 + 9 xy + 11 yz + 13 zx = 0 .

has a nontrivial integral solution.

Answers

Proof. We obtain a general formula (if a 0 , 4 ab d 2 0 ) for a ternary quadratic form

f ( x , y ) = a x 2 + b y 2 + c z 2 + dxy + eyz + fzx ,

useful for the three following problems.

f ( x , y ) = a ( x 2 + d a xy + f a xz ) + b y 2 + c z 2 + eyz = a [ ( x + d 2 a y + f 2 a z ) 2 d 2 4 a 2 y 2 f 2 4 a 2 z 2 df 2 a 2 yz ] + b y 2 + c z 2 + eyz = a ( x + d 2 a y + f 2 a z ) 2 + 4 ab d 2 4 a y 2 + 4 ac f 2 4 a z 2 + 2 ae df 2 a yz = a ( x + d 2 a y + f 2 a z ) 2 + 4 ab d 2 4 a ( y 2 + 4 ae 2 df 4 ab d 2 yz + 4 ac f 2 4 ab d 2 z 2 ) = a ( x + d 2 a y + f 2 a z ) 2 + 4 ab d 2 4 a { ( y + 2 ae df 4 ab d 2 z ) 2 + [ 4 ac f 2 4 ab d 2 ( 2 ae df 4 ab d 2 ) 2 ] z 2 } = a ( x + d 2 a y + f 2 a z ) 2 + 4 ab d 2 4 a ( y + 2 ae df 4 ab d 2 z ) 2 + ( 4 ac f 2 4 a 2 ae df ) 2 4 a ( 4 ab d 2 ) ) z 2 .

This gives (if a 0 , 4 ab d 2 0 )

f ( x , y ) = a ( x + d 2 a y + f 2 a z ) 2 + 4 ab d 2 4 a ( y + 2 ae df 4 ab d 2 z ) 2 + ( 4 ac f 2 4 a 2 ae df ) 2 4 a ( 4 ab d 2 ) ) z 2 . (1)

If f ( x , y ) = 3 x 2 + 5 y 2 + 7 y 2 + 9 xy + 11 yz + 13 zx , the formula (1) gives (with the help of Sagemath, see Note 2)

84 f ( x , y ) = 7 ( 6 x + 9 y + 13 z ) 2 3 ( 7 y + 17 z ) 2 + 272 z 2 (2) = 7 ( 6 x + 9 y + 13 z ) 2 3 ( 7 y + 17 z ) 2 + 17 ( 4 z ) 2 . (3)

Consider the form

g ( X , Y ) = 7 X 2 3 Y 2 + 17 Z 2 .

By (3), f has a nontrivial rational solution if and only if g has a nontrivial rational solution. Therefore f has a nontrivial integral solution if and only if g has a nontrivial integral solution.

Here 7 , 3 and 17 are prime numbers. Note that

( 21 17 ) = ( 51 7 ) = ( 119 3 ) = 1 .

sage: kronecker(21,17), kronecker(51,7), kronecker(-119,3)
(1, 1, 1)

Then by Legendre’s Theorem, g has nontrivial integer solutions, so f has nontrivial integer solutions. □

Note 1: Consider some integral solution of g , for instance ( X , Y , Z ) = ( 5 , 9 , 2 ) :

7 5 2 3 9 2 + 17 2 2 = 0 .

To obtain a corresponding solution ( x , y , z ) of f ( x , y , z ) = 0 , we solve the system

( X Y Z ) = ( 6 9 13 0 7 17 0 0 4 ) ( x y z )

If A = ( 6 9 13 0 7 17 0 0 4 ) , then A 1 = 1 84 ( 14 18 31 0 12 51 0 0 21 ) , and

( x y z ) = 1 84 ( 14 18 31 0 12 51 0 0 21 ) ( 5 9 2 ) = 1 84 ( 30 6 42 ) = 1 14 ( 5 1 7 )

So ( x , y , z ) = ( 5 , 1 , 7 ) is an integral solution of 3 x 2 + 5 y 2 + 7 y 2 + 9 xy + 11 yz + 13 zx = 0 :

3 5 2 + 5 1 2 + 7 7 2 9 5 1 + 11 1 7 13 7 5 = 0 .

Note 2: With Sagemath:

(a,b,c,d,e,f) = (3,5,7,9,11,13)
var(’x,y,z’)
g = a * (x + (d/(2*a))*y + (f/(2*a))*z)^2 \
     + ((4*a*b - d^2)/(4*a))* (y + ((2*a*e-d*f)/(4*a*b - d^2))*z)^2  \
     + ((4*a*c -f^2)/(4*a) - (2*a*e-d*f)^2/(16*a^2*b - 4*a*d^2))*z^2
84 * g

7 ( 6 x + 9 y + 13 z ) 2 3 ( 7 y + 17 z ) 2 + 272 z 2

User profile picture
2025-04-27 15:13
Comments