Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 5.5.4 (Equation $5x^2 + 7y^2 + 9y^2 + 11xy + 13 yz + 15 zx = 0$)

Exercise 5.5.4 (Equation $5x^2 + 7y^2 + 9y^2 + 11xy + 13 yz + 15 zx = 0$)

Determine whether the equation

5 x 2 + 7 y 2 + 9 y 2 + 11 xy + 13 yz + 15 zx = 0 .

has a nontrivial integral solution.

Answers

Proof. Put

f ( x , y ) = x 2 + 7 y 2 + 9 y 2 + 11 xy + 13 yz + 15 zx .

Using formula (1) in Problem 3, we obtain

380 f ( x , y ) = 19 ( 10 x + 11 y + 15 z ) 2 + ( 19 y 35 z ) 2 2080 z 2 = 19 ( 10 x + 11 y + 15 z ) 2 + ( 19 y 35 z ) 2 130 ( 4 z ) 2

Consider the form

g ( X , Y ) = 19 X 2 + Y 2 130 Z 2

Then f has nontrivial integral solutions if and only if g has nontrivial integral solutions.

If a = 19 , b = 1 , c = 130 , then ab = 19 is not a square modulo 130 , otherwise 19 would be a square modulo the prime 13 , but ( 19 13 ) = 1 .

sage:  Mod(-19, 130).is_square()
False

By Legendre’s Theorem, the equation 5 x 2 + 7 y 2 + 9 y 2 + 11 xy + 13 yz + 15 zx = 0 has no nontrivial integral solution. □

User profile picture
2025-04-27 15:37
Comments