Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 5.5.5 (Equation $x^2 + 3y^2 + 5z^2 + 2xy + 4 yz + 6zx = 0$)

Exercise 5.5.5 (Equation $x^2 + 3y^2 + 5z^2 + 2xy + 4 yz + 6zx = 0$)

Determine whether the equation

x 2 + 3 y 2 + 5 z 2 + 2 xy + 4 yz + 6 zx = 0 .

has a nontrivial integral solution.

Answers

Proof. Put

f ( x , y ) = x 2 + 3 y 2 + 5 z 2 + 2 xy + 4 yz + 6 zx .

Using formula (1) in Problem 3, we obtain

2 f ( x , y ) = 2 ( x + y + 3 z ) 2 + ( 2 y z ) 2 9 z 2 = 2 ( x + y + 3 z ) 2 + ( 2 y z ) 2 ( 3 z ) 2

Put

g ( x , y ) = 2 X 2 + Y 2 Z 2 .

Then f has nontrivial integral solutions if and only if g has nontrivial integral solutions.

Since every integer is a quadratic residue modulo 1 or modulo 2 , by Legendre’s theorem, g has nontrivial integral solutions (for instance ( 2 , 1 , 3 ) ).

Therefore, the equation x 2 + 3 y 2 + 5 z 2 + 2 xy + 4 yz + 6 zx = 0 has a nontrivial integral solution. □

Note: The solution ( 2 , 1 , 3 ) of g ( X , Y , Z ) = 0 is corresponding to the solution ( 2 , 1 , 1 ) of f ( x , y , z ) = 0 :

2 2 + 3 1 2 + 5 1 2 2 2 1 + 4 1 1 6 1 2 = 0 .

sage: A = matrix([[1,1,3],[0,2,-1],[0,0,3]])
sage: A^(-1) * matrix([[2],[1],[3]])
[-2]
[ 1]
[ 1]

User profile picture
2025-04-27 16:07
Comments