Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 5.5.7 (Value of $N(ax^2 + by^2 +cz^2 \equiv 0 \pmod p)$ if $abc \equiv 0 \pmod p$.)

Exercise 5.5.7 (Value of $N(ax^2 + by^2 +cz^2 \equiv 0 \pmod p)$ if $abc \equiv 0 \pmod p$.)

Suppose that a , b and c are given integers, and let N ( p ) denote the number of solutions of the congruence (5.41), including the trivial solution. Show that if p divides all the coefficients then N ( p ) = p 3 , that if it divides exactly two of the coefficients then N ( p ) = p 2 , and that if it divides exactly one of the coefficients then either N ( p ) = p or N ( p ) = 2 p 2 p , except that N ( 2 ) = 4 .

Answers

Proof. Let 𝔽 p = pℤ the field with p elements.

We write α = a ¯ , β = b ¯ , γ = c ¯ the classes of a , b , c in pℤ , and

f ( x , y , z ) = α x 2 + β y 2 + γ z 2 .

We define

S p = { ( x , y , z ) 𝔽 p 3 α x 2 + β y 2 + γ z 2 = 0 } ,

so that

N ( p ) = Card S p .

  • If p a , p b , p c , then α = β = γ = 0 , and f ( x , y , z ) = 0 . Therefore S p = 𝔽 p 3 , and

    N ( p ) = p 3 .

  • We suppose that p a , p b and p c . Then f ( x , y , z ) = γ z 2 , where γ 0 . Therefore f ( x , y , z ) = 0 z = 0 , thus S p = 𝔽 p × 𝔽 p × { 0 } . This gives

    N ( p ) = p 2 .

    More generally, we prove similarly that if p divides exactly two of the coefficients a , b , c then N ( p ) = p 2 .

  • Suppose now that p a , p b , p c . Then f ( x , y , z ) = β y 2 + γ z 2 , where β 0 , γ 0 , and

    f ( x , y , z ) = 0 β y 2 = γ z 2 ( y , z ) = ( 0 , 0 )  or  ( z y 1 ) 2 = β γ 1 .
    • If bc is not a square modulo p , then β γ 1 = ( βγ ) γ 2 is not a square in 𝔽 p . Therefore f ( x , y , z ) = 0 y = z = 0 , so S p = 𝔽 p × { 0 } × { 0 } , thus

      N ( p ) = p .

    • If bc is a square modulo p , then β γ 1 = δ 2 , for some δ 𝔽 p . Then

      f ( x , y , z ) = 0 ( y , z ) = ( 0 , 0 )  or  ( z y 1 ) 2 = δ 2 z = δy  or  z = δy .

      Let A δ denote

      A δ = { ( x , y , z ) 𝔽 p 3 z = δy } = { ( x , y , δy ) x 𝔽 p , y 𝔽 p } .

      Then S p = A δ A δ . Moreover the map φ : 𝔽 p 2 A δ defined by φ ( x , y ) = ( x , y , δy ) is bijective, thus Card ( A δ ) = p 2

      • If p 2 , since δ 0 , δy = δy 2 δy = 0 y = 0 , thus A δ A δ = 𝔽 p × { 0 } × { 0 } , so Card ( A δ A δ ) = p , and

        N ( p ) = Card ( A δ A δ ) = Card ( A δ ) + Card ( A δ ) Card ( A δ A δ ) = 2 p 2 p .
      • If p = 2 , then β = γ = δ = 1 , and f ( x , y , z ) = 0 y 2 + z 2 = 0 z = y , thus S p = { 0 , 0 , 0 ) , ( 0 , 1 , 1 ) , ( 1 , 0 , 0 ) , ( 1 , 1 , 1 ) } , so

        N ( p ) = 4 .

      This shows that if p divides exactly one of the coefficients a , b , c then N ( p ) = p or N ( p ) = 2 p 2 p , except that N ( 2 ) = 4 .

User profile picture
2025-04-30 11:22
Comments