Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 5.6.11 (Size of the solutions of $x^3 + y^3 = 7$)

Exercise 5.6.11 (Size of the solutions of $x^3 + y^3 = 7$)

Let the triple ( X n , Y n , Z n ) of integers be defined as in the proof of Theorem 5.16. Show that for n = 1 this is ( 20 , 17 , 7 ) , and that for n = 2 this is ( 36520 , 188479 , 90391 ) . Show also that X 3 is a 21 -digit number and that X 4 is a 85 -digit number.

Answers

Proof. This is an Exercise for computer: with Sagemath,

sage: def triple(n):
....:     x, y, z = 2, 1, 1
....:     for i in range(n):
....:         x, y, z = x * (x^3 + 2 * y^3), -y * (2 * x^3 + y^3), z * (x^3 - y^3)
....:     return x, y, z
....:
sage: list_triples = [triple(n) for n in range(5)]
....: list_triples[:3]
....:
[(2, 1, 1), (20, -17, 7), (-36520, 188479, 90391)]
sage: x3, x4 = list_triples[3][0],  list_triples[4][0]
....: len(str(abs(x3))), len(str(abs(x4)))
....:
(21, 85)

This confirms the results of the statement. □

User profile picture
2025-05-10 08:09
Comments