Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 5.6.12 (Value of $\nu_7(Z_n)$, where $X_n^3 + Y_n^3 = 7Z_n^3$)

Exercise 5.6.12 (Value of $\nu_7(Z_n)$, where $X_n^3 + Y_n^3 = 7Z_n^3$)

Let the triple ( X n , Y n , Z n ) of integers be defined as in the proof of Theorem 5.16. Show that the power of 7 dividing Z n tends to infinity with n .

Answers

Proof. For some unknown reason, this result seems false, because Z n 0 ( mod 7 2 ) for any value of n .

n X n Y n Z n
0 2 1 1
1 20 32 7
2 34 25 35
3 41 46 28
4 20 32 42
5 34 25 14
6 41 46 21
7 20 32 7

Thus

X 7 X 1 , Y 7 Y 1 , Z 7 Z 1 ( mod 49 )

By induction, for all n 1 ,

X n + 6 X n , Y n + 6 Y n , Z n + 6 Z n ( mod 49 ) ,

therefore, for any n 1 and for any k 0

X n + 6 k X n , Y n + 6 k Y n , Z n + 6 k Z n ( mod 49 ) .

So every Z n is congruent modulo 7 2 to some Z r , where 1 r 6 . By the preceding array, Z r 0 ( mod 7 2 ) for 1 r 6 , but Z r 0 ( mod 7 ) . Therefore

ν 7 ( Z n ) = 1 ( n 1 ) .

This contradicts the statement. □

With Sagemath:

def triple_mod(n):
    x, y, z = 2, 1, 1
    for i in range(n):
        x, y, z = (x * (x^3 + 2 * y^3)) % (7^2),
                  (-y * (2 * x^3 + y^3)) % (7^2),
                  (z * (x^3 - y^3)) % (7^2)
    return (x,y,z)

print([triple_mod(n) for n in range(8)])
    [(2, 1, 1), (20, 32, 7), (34, 25, 35), (41, 46, 28), (20, 32, 42),
           (34, 25, 14), (41, 46, 21), (20, 32, 7)]

User profile picture
2025-05-10 08:13
Comments