Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 5.6.13 (Minoration of the solutions of $X_n^3 + Y_n^3 = 9Z_n^3$)

Exercise 5.6.13 (Minoration of the solutions of $X_n^3 + Y_n^3 = 9Z_n^3$)

Let the triple ( X n , Y n , Z n ) of integers be defined as in the proof of Theorem 5.16, and let H n = max ( | X n | , | Y n | ) . Show that H n + 1 1 2 H n 4 . Deduce that H n 1 0 4 n 2 for n 2 .

Answers

Proof.

(a)
By definition of the sequence ( X n , Y n , Z n ) n , ( X 0 , Y 0 , Z 0 ) = ( 2 , 1 , 1 ) and for all n , X n + 1 = X n ( X n 3 + 2 Y n 3 ) , Y n + 1 = Y n ( 2 X n 3 + Y n 3 ) , Z n + 1 = Z n ( X n 3 Y n 3 ) .

Let H n = max ( | X n | , | Y n | ) .

  • If | X n | | Y n | , then H n = | X n | .

    • If | Y n | 3 1 4 H n 3 , then

      | X n + 1 | = | X n | | X n 3 + 2 Y n 3 | | X n | ( | X n | 3 2 | Y n | 3 ) ( by triangular inequality ) H n ( H n 3 1 2 H n 3 ) (  since  H n = | X n |  and  | Y n | 3 1 4 H n 3 ) = 1 2 H n 4 .

      Then H n + 1 = max ( | X n + 1 | , | Y n + 1 | ) 1 2 H n 4 .

    • If | Y n | 3 > 1 4 H n 3 , then | Y n | 1 4 3 H n 1 2 H n

      ( 1 4 3 1 2 4 3 2 4 2 3 = 8 ) , so

      | Y n + 1 | = | Y n | | 2 X n 3 + Y n 3 | | Y n | ( 2 | X n | 3 | Y n | 3 ) ( by triangular inequality ) 1 2 H n ( 2 | X n | 3 | Y n | 3 ) ( since  | Y n | > 1 2 H n ) 1 2 H n | X n | 3 ( since  | Y n | | X n | ) 1 2 H n 4 ( since  | X n | = H n ) .

      Then H n + 1 = max ( | X n + 1 | , | Y n + 1 | ) 1 2 H n 4 .

  • If | X n | | Y n | , then H n = | Y n | . Exchanging the roles of X n , Y n , we obtain similar inequalities.

    • If | X n | 3 1 4 H n 3 , then

      | Y n + 1 | = | Y n | | Y n 3 + 2 X n 3 | | Y n | ( | Y n | 3 2 | X n | 3 ) ( by triangular inequality ) H n ( H n 3 1 2 H n 3 ) (  since  H n = | Y n |  and  | X n | 3 1 4 H n 3 ) = 1 2 H n 4 .

      Then H n + 1 = max ( | X n + 1 | , | Y n + 1 | ) 1 2 H n 4 .

    • If | X n | 3 > 1 4 H n 3 , then | X n | 1 4 3 H n 1 2 H n , so

      | X n + 1 | = | X n | | 2 Y n 3 + X n 3 | | X n | ( 2 | Y n | 3 | X n | 3 ) ( by triangular inequality ) 1 2 H n ( 2 | Y n | 3 | X n | 3 ) ( since  | X n | > 1 4 H n ) 1 2 H n | Y n | 3 ( since  | X n | | Y n | ) 1 2 H n 4 ( since  | Y n | = H n ) .

      Then H n + 1 = max ( | X n + 1 | , | Y n + 1 | ) 1 2 H n 4 .

In every case,

H n + 1 1 2 H n 4 .

(b)
We cannot prove the proposed inequality by induction, but we will prove 𝒫 ( n ) : H n 1 2 4 n 2 1 3 H 2 4 n 2

by induction for n 2 . Note that 4 n 2 1 3 is an integer for any n 2 , because 4 n 2 1 0 ( mod 3 ) .

  • 𝒫 ( 2 ) is equivalent to H 2 H 2 , so 𝒫 ( 2 ) is true.
  • Suppose that 𝒫 ( n ) is true for some n 2 . Then, by part (a),

    H n + 1 1 2 H n 4 1 2 ( 1 2 4 n 2 1 3 H 2 4 n 2 ) 4 = 1 2 4 n 1 4 3 + 1 H 2 4 n 1 = 1 2 4 n 1 1 3 H 2 4 n 1 .

    This shows that 𝒫 ( n + 1 ) is true, if 𝒫 ( n ) is true.

  • This induction shows that

    n 2 , H n 1 2 4 n 2 1 3 H 2 4 n 2 .

Therefore

H n 1 2 4 n 2 1 3 H 2 4 n 2 1 2 4 n 2 3 H 2 4 n 2 = ( H 2 2 3 ) 4 n 2 .

By Problem 11, H 2 = 188479 > 10 2 3 , so

H n 1 0 4 n 2 ( n 2 ) .

User profile picture
2025-05-12 07:42
Comments