Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 5.6.1 (Parametrization of $x^2 - 2y^2$, starting from $(1,0)$)

Exercise 5.6.1 (Parametrization of $x^2 - 2y^2$, starting from $(1,0)$)

Find a parametrization of the rational points on the hyperbola x 2 2 y 2 = 1 , starting from the point ( 1 , 0 ) .

Answers

Proof. The line with slope t passing by the point ( 1 , 0 ) has for equation

y = t ( x 1 ) .

Let ( x , y ) 2 . Then

x 2 2 y 2 = 1 { ( x , y ) = ( 1 , 0 )  or  x 1  and  t , { x 2 2 t 2 ( x 1 ) 2 = 1 , y = t ( x 1 ) , { ( x , y ) = ( 1 , 0 )  or  x 1  and  t , { ( x 1 ) [ x + 1 2 t 2 ( x 1 ) ] = 0 , y = t ( x 1 ) , ( x , y ) = ( 1 , 0 )  or  t , { x ( 1 2 t 2 ) + 2 t 2 + 1 = 0 , y = t ( x 1 ) , ( x , y ) = ( 1 , 0 )  or  t , { x = 2 t 2 + 1 2 t 2 1 , y = 2 t 2 t 2 1 .

With Sagemath:

var(’x,y,t’)
solve([x^2 - 2*y^2 == 1, y == t*(x-1)],x,y)

[ [ x = 2 t 2 + 1 2 t 2 1 , y = 2 t 2 t 2 1 ] , [ x = 1 , y = 0 ] ]

User profile picture
2025-05-03 10:37
Comments