Exercise 5.7.17* ($(\vartheta \circ \varphi)(P) = 2P$)

Let f ( x , y ) = y 2 x 3 6 x 2 4 x , g ( u , v ) = v 2 u 3 + 12 u 2 20 u . Let φ take pairs ( x , y ) to pairs ( u , v ) by means of the formulae u = y 2 x 2 , v = y 4 y x 2 . Show that if P 𝒞 f ( ) then φ ( P ) 𝒞 g ( ) . Let 𝜗 take pairs ( u , v ) to pairs ( x , y ) by the formulae x = v 2 ( 4 u 2 ) , y = ( 1 20 u 2 ) v 8 . Show that if Q 𝒞 g ( ) then 𝜗 ( Q ) 𝒞 f ( ) . Take P = ( 1 , 1 ) . Show that P 𝒞 f ( ) , that φ ( P ) = ( 1 , 3 ) 𝒞 g ( ) , and that 𝜗 φ ( P ) = ( 9 4 , 57 8 ) = 2 P . Show, more generally, that if P 𝒞 f ( ) then 𝜗 φ ( P ) = 2 P .

Answers

Proof. Recall that O = ( 0 : 1 : 0 ) is the point at infinity of 𝒞 f ( ) and 𝒞 g ( ) . We define φ and 𝜗 without ambiguity by

φ { 𝒞 f ( ) 𝒞 g ( ) P = ( x , y ) ( u , v ) = ( y 2 x 2 , y 4 y x 2 )  if  P O  and  P T = ( 0 , 0 ) , T = ( 0 , 0 ) O O O ,

𝜗 { 𝒞 g ( ) 𝒞 f ( ) Q = ( u , v ) ( x , y ) = ( v 2 4 u 2 , ( 1 20 u 2 ) v 8 )  if  Q O  and  Q T = ( 0 , 0 ) , T = ( 0 , 0 ) O O O . These definitions make sense if P 𝒞 f ( ) implies φ ( P ) 𝒞 g ( ) , and if Q 𝒞 g ( ) implies 𝜗 ( Q ) 𝒞 f ( ) . This is the case if P = T or P = O . Let P = ( x , y ) 𝒞 f ( ) , and suppose that P O and P T . Then y 2 = x 3 + 6 x 2 + 4 x , x 0 . (1)

Now, if ( u , v ) = ( y 2 x 2 , y 4 y x 2 ) 𝒞 g ( ) , then, using (1),

g ( u , v ) = v 2 u 3 + 12 u 2 20 u = ( y 4 y x 2 ) 2 y 6 x 6 + 12 y 4 x 4 20 y 2 x 2 = 1 x 6 [ ( x 3 y 4 xy ) 2 y 6 + 12 x 2 y 4 20 x 4 y 2 ] = y 2 x 6 [ ( x 2 4 ) 2 x 2 y 4 + 12 x 2 y 2 20 x 4 ] = y 2 x 6 [ ( x 2 4 ) 2 x 2 ( x 3 + 6 x 2 + 4 x ) 2 + 12 x 2 ( x 3 + 6 x 2 + 4 x ) 20 x 4 ] = 0 .

Therefore ( u , v ) = f ( x , y ) 𝒞 g ( ) .

Similarly, let Q = ( u , v ) 𝒞 g ( ) , and suppose that Q O and Q T . Then

v 2 = u 3 12 u 2 + 20 u , u 0 . (2)

If ( x , y ) = ( v 2 4 u 2 , ( 1 20 u 2 ) v 8 ) , then, using (2),

f ( x , y ) = y 2 x 3 6 x 2 4 x = ( ( 1 20 u 2 ) v 8 ) 2 ( v 2 4 u 2 ) 3 6 ( v 2 4 u 2 ) 2 4 ( v 2 4 u 2 ) = 1 64 u 6 [ u 2 ( u 2 20 ) 2 v 2 v 6 24 u 2 v 4 64 u 4 v 2 ] = v 2 64 u 6 [ u 2 ( u 2 20 ) 2 v 4 24 u 2 v 2 64 u 4 ] = v 2 64 u 6 [ u 2 ( u 2 20 ) 2 ( u 3 12 u 2 + 20 u ) 2 24 u 2 ( u 3 12 u 2 + 20 u ) 64 u 4 ] = 0 .

Therefore ( x , y ) = g ( u , v ) 𝒞 f ( ) . Now take P = ( x , y ) = ( 1 , 1 ) . Then f ( 1 , 1 ) = 1 + 1 6 + 4 = 0 , so P 𝒞 f ( ) . Moreover ( u , v ) = ( 1 , 1 4 ) = ( 1 , 3 ) , and g ( 1 , 3 ) = 9 1 + 12 20 = 0 , so φ ( P ) 𝒞 g ( ) (this is also a consequence of our preceding proof).

Then

( 𝜗 φ ) ( P ) = 𝜗 ( 1 , 3 ) = ( 9 4 , ( 1 20 ) 3 8 ) = ( 9 4 , 57 8 ) .

Moreover, if 2 P = ( X , Y ) , then we obtain by the explicit formulas, for a = 6 , b = 4 , x = 1 , y = 1 , and p ( x ) = x 3 + 6 x 2 + 4 x ,

X = ( p ( x ) 2 y ) 2 a 2 x = ( 3 x 2 + 12 x + 4 2 y ) 2 a 2 x = 25 4 4 = 9 4 ,

and

Y = y ( p ( x ) 2 y ) ( X x ) = 1 5 2 ( 9 4 + 1 ) = 57 8 .

Thus 2 P = ( 9 4 , 57 8 ) = ( 𝜗 φ ) ( P ) .

We show that ( 𝜗 φ ) ( P ) = 2 P is true for every point P 𝒞 f ( ) .

If P = T or P = O , then ( 𝜗 φ ) ( T ) = O = 2 O .

Let P = ( x , y ) 𝒞 f ( ) , where P T , P O , and 2 P = ( X , Y ) . By the explicit formulas (4.53),

X = ( 3 x 2 + 12 x + 4 2 y ) 2 6 2 x , Y = y ( 3 x 2 + 12 x + 4 2 y ) ( X x ) .

Therefore, using (1),

X = ( 3 x 2 + 12 x + 4 ) 2 4 ( 6 + 2 x ) y 2 4 y 2 = ( 3 x 2 + 12 x + 4 ) 2 4 ( 6 + 2 x ) ( x 3 + 6 x 2 + 4 x ) 4 y 2 = x 4 8 x + 16 4 y 2 = ( x 2 4 ) 2 4 y 2

and

Y = 1 2 y [ 2 y 2 ( 3 x 2 + 12 x + 4 ) ( ( x 2 4 ) 2 4 y 2 x ) ] = 1 8 y 3 [ 8 y 4 ( 3 x 2 + 12 x + 4 ) ( ( x 2 4 ) 2 4 x y 2 ) ) ] = 1 8 y 3 [ 8 ( x 3 + 6 x 2 + 4 x ) 2 ( 3 x 2 + 12 x + 4 ) ( ( x 2 4 ) 2 4 x ( x 3 + 6 x 2 + 4 x ) ) ] = x 6 + 12 x 5 + 20 x 4 80 x 2 192 x 64 8 y 3 = ( x 2 4 ) ( x 4 + 12 x 3 + 24 x 2 + 48 x + 16 ) 8 y 3 .

Moreover φ ( P ) = ( u , v ) = ( y 2 x 2 , y 4 y x 2 ) = ( y 2 x 2 , y ( x 2 4 ) x 2 ) , and

( 𝜗 φ ) ( P ) = ( v 2 4 u 2 , v ( u 2 20 ) 8 u 2 ) = ( ( y ( x 2 4 ) x 2 ) 2 4 ( y 2 x 2 ) 2 , ( y ( x 2 4 ) x 2 ) ( ( y 2 x 2 ) 2 20 ) 8 ( y 2 x 2 ) 2 ) = ( ( x 2 4 ) 2 4 y 2 , ( x 2 4 ) ( y 4 20 x 4 ) 8 x 2 y 3 )

Moreover

y 4 20 x 4 = ( x 3 + 6 x 2 + 2 x ) 2 20 x 4 = x 2 [ ( x 2 + 6 x + 4 ) 2 20 x 2 = x 2 ( x 4 + 12 x 3 + 24 x 2 + 48 x + 16 ) .

( 𝜗 φ ) ( P ) = ( ( x 2 4 ) 2 4 y 2 , ( x 2 4 ) ( x 4 + 12 x 3 + 24 x 2 + 48 x + 16 ) 8 y 3 ) = 2 P .

This shows that for all points P on 𝒞 f ( ) ,

( 𝜗 φ ) ( P ) = 2 P .

Note: Silverman and Tate prove in “Rational Points on Elliptic Curve” (p.76-79) that in general 𝜗 and φ are group homomorphisms such that ( 𝜗 φ ) ( P ) = 2 P for all points P on the curve. This is part of the proof of Mordell’s Theorem.

User profile picture
2025-05-29 18:51
Comments