Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 7.3.2 (Evaluate $\langle 2,1,1,1,1,\ldots \rangle$ and $\langle 2,3,1,1,1,1,\cdots \rangle$)

Exercise 7.3.2 (Evaluate $\langle 2,1,1,1,1,\ldots \rangle$ and $\langle 2,3,1,1,1,1,\cdots \rangle$)

Evaluate the infinite continued fractions 2 , 1 , 1 , 1 , 1 , and 2 , 3 , 1 , 1 , 1 , 1 , .

Answers

Proof. By Lemma 7.8 and Problem 1,

2 , 1 , 1 , 1 , 1 , = 2 + 1 1 , 1 , 1 , 1 , = 2 + 1 ( 5 + 1 2 ) = 2 + 5 + 4 5 + 1 = 3 + 5 2 .

With Sagemath:

sage: cg = continued_fraction([(2,),(1,)]);cg
[2; (1)*]
sage: cg.value()
1/2*sqrt5 + 3/2

Similarly,

2 , 3 , 1 , 1 , 1 , 1 , = 2 + 1 3 + 1 1 , 1 , 1 , 1 , = 2 + 1 3 + 1 ( 5 + 1 2 ) = 7 5 + 11 3 5 + 5 = 5 2 1 10 5 .

Verification with Sagemath:

sage: K.<sqrt5> = QuadraticField(5)
sage: x = 5/2 - (1/10) * sqrt5
sage: x.continued_fraction()
[2; 3, (1)*]

User profile picture
2025-07-24 09:43
Comments