Exercise 7.4.1 (Some expansions of quadratic numbers)

Expand each of the following as infinite simple continued fractions: 2 , 2 1 , 2 2 , 3 , 1 3 .

Answers

Proof. Put ξ = 2 1 . Then

ξ = 2 1 = 1 2 + 1 = 1 2 + ( 2 1 ) = 1 2 + ξ .

The algorithm of section 7.4 shows that

ξ = 2 1 = 0 , 2 , 2 , 2 , ,

so

2 = 1 + ξ = 1 , 2 , 2 , 2 , 2 , = 1 , ( 2 ) .

For a more formal proof, put η = 1 ξ = 2 + 1 . Then η = 2 + 1 η . If η = a 0 , a 1 , , a n , , then

a 0 , a 1 , , a n , = 2 + 1 a 0 , a 1 , , a n , = 2 , a 0 , a 1 , , a n = 2 , a 0 , a 1 , , a n , .

The unicity of the expansion gives 2 = a 0 = a 1 = a 2 = , so

2 + 1 = 2 , 2 , 2 , 2 , .

This gives

2 = 1 , 2 , 2 , 2 , 2 , = 1 , ( 2 ) ,

and

2 1 = 0 , 2 , 2 , 2 , 2 , = 0 , ( 2 ) .

Moreover

2 2 = 1 2 = 0 + 1 1 , 2 , 2 , 2 , 2 , = 0 , 1 , 2 , 2 , 2 , 2 , = 0 , 1 , ( 2 ) .

Put ζ = 3 + 1 . Then

ζ = 3 + 1 = 2 + ( 3 1 ) = 2 + 1 ( 3 + 1 2 ) = 2 + 1 1 + 3 1 2 = 2 + 1 1 + 1 3 + 1 = 2 + 1 1 + 1 ζ .

If ζ = a 0 , a 1 , , a n , , then

a 0 , a 1 , , a n , = 2 + 1 1 + 1 a 0 , a 1 , , a n , = 2 + 1 1 , a 0 , a 1 , , a n , = 2 , 1 , a 0 , a 1 , , a n , .

The unicity of the expansion gives a 2 k = 1 and a 2 k + 1 = 1 for all k . Therefore

3 + 1 = 2 , 1 , 2 , 1 , = ( 2 , 1 ) ,

so

3 = 1 , 1 , 2 , 1 , 2 , = 1 , ( 1 , 2 ) ,

and

1 3 = 0 + 1 1 , 1 , 2 , 1 , 2 , = 0 , 1 , 1 , 2 , 1 , 2 , , = 0 , 1 , ( 1 , 2 ) .

Verification:

sage: continued_fraction(1/sqrt(3))
[0; 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...]

User profile picture
2025-07-28 08:27
Comments