Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 7.4.4 ($ \lim_{n\to \infty} \langle a_0,a_1,\ldots,a_n,b_1,b_2,b_3,\ldots\rangle = \xi$)

Exercise 7.4.4 ($ \lim_{n\to \infty} \langle a_0,a_1,\ldots,a_n,b_1,b_2,b_3,\ldots\rangle = \xi$)

Let ξ be an irrational number with continued fraction expansion a 0 , a 1 , a 2 , a 3 , . Let b 1 , b 2 , b 3 , be any finite or infinite sequence of positive integers. Prove that

lim n a 0 , a 1 , a 2 , , a n , b 1 , b 2 , b 3 , = ξ .

Answers

We write h i k i the convergents of ξ . By Theorem 7.10,

lim n ( ξ h n k n ) = 0 . (1)

Put ξ n = a 0 , a 1 , , a n , b 1 , b 2 , b 3 , and η = b 1 , b 2 , b 3 , > 0 . then ξ n has the same convergents as ξ up to h n k n , and by Theorem 7.10

ξ n = a 0 , a 1 , , a n , η .

Then, as in (7.9), for all n 0 ,

ξ n h n k n = η h n + h n 1 η k n + k n 1 h n k n = ( h n k n 1 h n 1 k n ) k n ( η k n + k n 1 ) = ( 1 ) n k n ( η k n + k n 1 )

Since η > 0 ,

| ξ n h n k n | = 1 k n ( η k n + k n 1 ) < 1 k n k n 1 .

The sequence of integers ( k n ) n is strictly increasing, thus lim n 1 k n k n 1 = 0 , therefore

lim n ( ξ n h n k n ) = 0 . (2)

Since

ξ ξ n = ( ξ h n k n ) ( ξ n h n k n ) ,

the limits (1) and (2) show that

lim n ( ξ ξ n ) = 0 ,

so

ξ = lim n a 0 , a 1 , , a n , b 1 , b 2 , b 3 , .

User profile picture
2025-07-29 09:51
Comments