Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 7.4.6* ($\xi - h_n/k_n = (-1)^n k_n^{-2} (\xi_{n+1} + \langle 0,a_n,a_{n-1}, \ldots,a_2,a_1\rangle)^{-1}$)

Exercise 7.4.6* ($\xi - h_n/k_n = (-1)^n k_n^{-2} (\xi_{n+1} + \langle 0,a_n,a_{n-1}, \ldots,a_2,a_1\rangle)^{-1}$)

Prove that for n 1 ,

ξ h n k n = ( 1 ) n k n 2 ( ξ n + 1 + 0 , a n , a n 1 , , a 2 , a 1 ) 1 .

Answers

Proof. As in (7.9), we have

ξ h n k n = a 0 , a 1 , a 2 , , a n , ξ n + 1 ( by (7.8) ) = ξ n + 1 h n + h n 1 ξ n + 1 k n + k n 1 h n k n ( by Theorem 7.3 ) = ( h n k n 1 h n 1 k n ) k n ( ξ n + 1 k n + k n 1 ) = ( 1 ) n k n ( ξ n + 1 k n + k n 1 ) ( by Theorem 7.5 ) = ( 1 ) n k n 2 ( ξ n + 1 + k n 1 k n ) .

Moreover, by Problem 7.3.4,

k n k n 1 = a n , a n 1 , , a 2 , a 1 .

Therefore

0 , a n , a n 1 , , a 2 , a 1 = 0 + 1 a n , a n 1 , , a 2 , a 1 = k n 1 k n .

Hence

ξ h n k n = ( 1 ) n k n 2 ( ξ n + 1 + 0 , a n , a n 1 , , a 2 , a 1 ) .

So ξ h n k n = ( 1 ) n k n 2 ( ξ n + 1 + 0 , a n , a n 1 , , a 2 , a 1 ) 1 is proven. □

Note: The difficulty is not there, but rather in the Problem 7.3.4.

User profile picture
2025-07-30 08:12
Comments