Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 7.4.7 ($k_n|k_{n-1}\xi - h_{n-1}| + k_{n-1} |k_n \xi - h_n| = 1$)

Exercise 7.4.7 ($k_n|k_{n-1}\xi - h_{n-1}| + k_{n-1} |k_n \xi - h_n| = 1$)

Prove that

k n | k n 1 ξ h n 1 | + k n 1 | k n ξ h n | = 1 .

Answers

Proof. By (7.6), k 1 | k 2 ξ h 2 | + k 2 | k 1 ξ h 1 | = 1 . and k 0 | k 1 ξ h 1 | + k 1 | k 0 ξ h 0 | = 1 , so the property is true for n = 1 and n = 0 .

Now we assume that n 1 . Then k n > 0 and k n 1 > 0 . Therefore k n | k n 1 ξ h n 1 | + k n 1 | k n ξ h n | = 1 is equivalent to

| ξ h n 1 k n 1 | + | ξ h n k n | = 1 k n k n 1 . (1)

It remains to prove (1).

  • If n is odd, by Theorem 7.10,

    h n 1 k n 1 < ξ < h n k n .

    Hence

    | ξ h n 1 k n 1 | + | ξ h n k n | = ( ξ h n 1 k n 1 ) ( ξ h n k n ) = h n k n h n 1 k n 1 = h n k n 1 k n h n 1 k n k n 1 = ( 1 ) n 1 k n k n 1 ( by Theorem 7.5 ) = 1 k n k n 1 ( since  n  is odd .
  • If n is even,

    h n k n < ξ < h n 1 k n 1 .

    Hence

    | ξ h n 1 k n 1 | + | ξ h n k n | = ( ξ h n 1 k n 1 ) + ( ξ h n k n ) = h n 1 k n 1 h n k n = ( h n k n 1 k n h n 1 ) k n k n 1 = ( 1 ) n k n k n 1 ( by Theorem 7.5 ) = 1 k n k n 1 ( since  n  is even .

In either case, (1) is true, thus for all n 1 ,

k n | k n 1 ξ h n 1 | + k n 1 | k n ξ h n | = 1 .

User profile picture
2025-07-30 08:41
Comments