Exercise 7.5.6 ($-\xi$ continued fraction expansion)

Let ξ be irrational, ξ = a 0 , a 1 , a 2 , . Verify that

ξ = a 0 12 , 1 , a 1 1 , a 2 , a 3 ,  if  a 1 > 1 ,

and  ξ = a 0 1 , a 2 + 1 , a 3 , a 4 ,  if  a 1 = 1 .

Answers

Proof.

  • Suppose that a 1 > 1 .

    Put ξ n = a n , a n + 1 , a n + 2 for any integer n . By (7.7), we have

    ξ = a 0 + 1 ξ 1 ,  and  ξ 1 = a 1 + 1 ξ 2 .

    Therefore

    ξ = a 0 , a 1 , a 2 , = ( a 0 + 1 ξ 1 ) = a 0 1 + ( 1 1 ξ 1 ) = a 0 1 + 1 1 + 1 ξ 1 1 = a 0 1 + 1 1 + 1 a 1 1 + 1 ξ 2 .

    Since a 1 1 and a 0 1 , we obtain

    a 1 1 + 1 ξ 2 = a 1 1 , ξ 2 , 1 + 1 a 1 1 + 1 ξ 2 = 1 + 1 a 1 1 , ξ 2 = 1 , a 1 1 , ξ 2 , a 0 1 + 1 1 + 1 a 1 1 + 1 ξ 2 = a 0 1 + 1 1 , a 1 1 , ξ 2 = a 0 1 , 1 , a 1 1 , ξ 2 .

    Hence

    ξ = a 0 1 , 1 , a 1 1 , ξ 2 = a 0 1 , 1 , a 1 1 , a 2 , a 3 , a 4 , = a 0 1 , 1 , a 1 1 , a 2 , a 3 , a 4 ,
  • Suppose that a 1 = 1 . Then ξ 1 = 1 + 1 ξ 2 , thus

    ξ = a 0 1 + 1 1 + 1 ξ 1 1 = a 0 1 + 1 1 + ξ 2 = a 0 1 + 1 1 + a 2 + 1 ξ 3

    As previously,

    1 + a 2 + 1 ξ 3 = 1 + a 2 , ξ 3 , a 0 1 + 1 1 + a 2 + 1 ξ 3 = a 0 1 + 1 1 + a 2 , ξ 3 = a 0 1 , 1 + a 2 , ξ 3 .

    Therefore

    ξ = a 0 1 , 1 + a 2 , ξ 3 = a 0 1 , 1 + a 2 , a 3 , a 4 , a 5 , = a 0 1 , 1 + a 2 , a 3 , a 4 , a 5 , .

In conclusion,

ξ = { a 0 1 , 1 , a 1 1 , a 2 , a 3 , a 4 , if  a 1 > 1 , a 0 1 , 1 + a 2 , a 3 , a 4 , a 5 , if  a 1 = 1 .

User profile picture
2025-08-07 08:40
Comments