Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 7.6.1 (Find some fractions $a/b$ such that $|\sqrt{2} - a/b| < 1/(\sqrt{5} b^2)$)

Exercise 7.6.1 (Find some fractions $a/b$ such that $|\sqrt{2} - a/b| < 1/(\sqrt{5} b^2)$)

Find two rational numbers a b satisfying

| 2 a b | < 1 5 b 2 .

Answers

Proof. Since

| 2 1 1 | < 0.415 < 0.447 < 1 5 1 2 , | 2 3 2 | < 0.086 < 0.111 < 1 5 2 2 ,

the fractions 1 1 and 3 2 are suitable.

For more with Sagemath:

sage: dfc = continued_fraction(sqrt(2)); dfc
[1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...]
sage: cvg = [dfc.convergent(i) for i in range(7)]; cvg
[1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169]
sage: for f in cvg:
....:     a,b = f.numer(), f.denom()
....:     if abs(sqrt(2) - f) < 1/(sqrt(5)* b^2):
....:         print(f)
....:
1
3/2
7/5
17/12
41/29
99/70
239/169

So all convergents up to h 6 k 6 = 239 169 are suitable. With further calculations, all convergents up to h 200 k 200 are convenient, so we may conjecture that all convergents a b of 2 satisfy | 2 a b | < 1 5 b 2 (to be verified). □

User profile picture
2025-08-07 16:30
Comments