Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 7.6.2 (Find some fractions $a/b$ such that $|\pi- a/b| < 1/(\sqrt{5} b^2)$)

Exercise 7.6.2 (Find some fractions $a/b$ such that $|\pi- a/b| < 1/(\sqrt{5} b^2)$)

Find two rational number a b satisfying

| π a b | < 1 5 b 2 .

Answers

Proof. With Sagemath:

sage: dfc = continued_fraction(pi); dfc
[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...]
sage: cvg = [dfc.convergent(i) for i in range(7)]; cvg
[3, 22/7, 333/106, 355/113, 103993/33102, 104348/33215, 208341/66317]
sage: for f in cvg:
....:     a,b = f.numer(), f.denom()
....:     if abs(pi - f) < 1/(sqrt(5)* b^2):
....:         print(f)
....:
3
22/7
355/113
104348/33215

So 3 1 and 22 7 are suitable (but not 333 106 or 103993 33102 ). □

User profile picture
2025-08-07 16:35
Comments