Homepage › Solution manuals › Ivan Niven › An Introduction to the Theory of Numbers › Exercise 7.6.2 (Find some fractions $a/b$ such that $|\pi- a/b| < 1/(\sqrt{5} b^2)$)
Exercise 7.6.2 (Find some fractions $a/b$ such that $|\pi- a/b| < 1/(\sqrt{5} b^2)$)
Find two rational number satisfying
Answers
Proof. With Sagemath:
sage: dfc = continued_fraction(pi); dfc [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...] sage: cvg = [dfc.convergent(i) for i in range(7)]; cvg [3, 22/7, 333/106, 355/113, 103993/33102, 104348/33215, 208341/66317] sage: for f in cvg: ....: a,b = f.numer(), f.denom() ....: if abs(pi - f) < 1/(sqrt(5)* b^2): ....: print(f) ....: 3 22/7 355/113 104348/33215
So and are suitable (but not or ). □
2025-08-07 16:35