Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 7.8.3 ($x^2 -d y^2 = -1$ has no solution if $d \equiv 3 \pmod 4$)

Exercise 7.8.3 ($x^2 -d y^2 = -1$ has no solution if $d \equiv 3 \pmod 4$)

Answers

Proof. If d 3 ( mod 4 ) , then x 2 d y 2 x 2 + y 2 ( mod 4 ) . Moreover x 2 0 or 1 ( mod 4 ) , thus x 2 + y 2 0 , 1 or 2 ( mod 4 ) , therefore x 2 + y 2 3 ( mod 4 ) . This shows that x 2 d y 2 1 ( mod 4 ) . A fortiori the solution x 2 d y 2 = 1 has no integer solution.

The equation x 2 d y 2 = 1 has no integer solution if d 3 ( mod 4 ) . □

User profile picture
2025-08-24 08:41
Comments