Exercise 4.7

Let a and a0. Define a0 = 1, and for n +, an = 1an. Show that the laws of exponents hold for a,b0 and n,m .

Answers

Lemma 1. For any n , 1n = 1.

Proof. We show this for n + by simple induction on n. First, clearly 11 = 1 by the inductive definition of exponentiation. Next, if 1n = 1, then we have 1n+1 = 1n 1 = 1n = 1 by the inductive definition of exponentiation and the inductive hypothesis. This completes the induction so that the result holds for all n +.

Clearly if n = 0 then, by the definition of 0 as an exponent, 1n = 10 = 1.

Lastly, if n then there is a k + where n = k. Then we have

1n = 1k = 1 1k (by the definition of negative exponentiation) = 1 1 (by what was just shown by induction since k +) = 1. (since 1 is its own reciprocal)

Thus the result has been shown for all the resulting cases when n . □

Lemma 2. 1an = (1a)n for any real a0 and n +.

Proof. We have

(1 a )nan = (1 a a)n (by Exercise 4.6 since n +) = 1n (by the definition of the reciprocal) = 1. (by Lemma 1 )

Thus (1a)n must be the unique reciprocal of an, that is (1a)n = 1an as desired. □

Lemma 3. anan = 1 for any real a0 and n +.

Proof. We have

anan = an ( 1 an ) (by the definition of negative exponentiation) = an (1 a )n (by Lemma 2 ) = (a 1 a )n (by Exercise 4.6 since n +) = 1n (by the definition of the reciprocal) = 1 (by Lemma 1 )

as desired. □

Main Problem.

First we show that anam = an+m for all real a0 and n,m .

Proof. Consider any real a0 and n,m . We number the following cases for reference:

1.
Case: n +.
(a)
Case: m +. Then the result immediately applies by Exercise 4.6.
(b)
Case: m = 0. Then we have anam = ana0 = an 1 = an = an+0 = an+m.
(c)
Case: m . Then m = k for some k +.
i.
Case: n > k. Then n k > 0 so that n k + since n k by Exercise 4.5 part (d). We then have anam = anak = ank+kak (since n = n + 0 = n k + k) = (ankak)ak (by Exercise 4.6 since k,n k +) = ank(akak) (since multiplication is associative) = ank 1 (by Lemma 3  since k +) = ank = an+m.
ii.
Case: n = k. Then clearly n + m = n k = k k = 0, so that we have anam = akak = 1 = a0 = an+m by Lemma 3 and the definition of 0 as an exponent.
iii.
Case: n < k. Then n k < 0 so that n k since n k by Exercise 4.5 part (d). Also, clearly n since n +. Then we have anam = anak = anak+nn (since  k = k + 0 = k + n n) = anankn (since addition is commutative) = an(ankan)(by case 3c below since n k,n ) = an(anank)(since multiplication is commutative) = (anan)ank(since multiplication is associative) = 1 ank (by Lemma 3 ) = ank = an+m.
2.
Case: n = 0.
(a)
Case: m +. Since anam = aman and an+m = am+n, this the same as case 1b above.
(b)
Case: m = 0. Then we have anam = a0a0 = 1 1 = 1 = a0 = a0+0 = an+m.
(c)
Case: m . Then there is a k + such that m = k, and anam = a0ak = 1 (1ak) = 1ak = ak = am = a0+m = an+m.
3.
Case: n .
(a)
Case: m +. This is the same as case 1c above.
(b)
Case: m = 0. This is the same as case 2c above.
(c)
Case: m . Here we have that n = k and m = l for some k,l +. Hence we have anam = akal = ( 1 ak ) ( 1 al ) (by the definition of negative exponents) = (1 a )k (1 a )l (by Lemma 2 ) = (1 a )k+l (by Exercise 4.6 since k,l +) = 1 ak+l (by Lemma 2 ) = a(k+l) (by the definition of negative exponents) = akl = an+m.

Thus in all cases we have shown the result. □

Next we show that (an)m = anm for all real a0 and n,m .

Proof. Consider any real a0 and n,m . We again number the cases for reference:

1.
Case: n +.
(a)
Case: m +. Then the result immediately applies by Exercise 4.6.
(b)
Case: m = 0. Then we have (an)m = (an)0 = 1 = a0 = an0 = anm by the definition of a 0 exponent.
(c)
Case: m . Then there is a k + such that m = k. Then we have (an)m = (an)k = 1 (an)k (by the definition of negative exponents) = 1 ank (by Exercise 4.6 since n,k +) = a(nk) (by the definition of negative exponents) = an(k) = anm.
2.
Case: n = 0. Then we have (an)m = (a0)m = 1m = 1 = a0 = a0m = anm by the definition of 0 as an exponent and Lemma 1 .
3.
Case: n . Then n = k for some k +.
(a)
Case: m +. Then we have (an)m = (ak)m = ( 1 ak ) m (by the definition of negative exponents) = [ (1 a )k] m (by Lemma 2 ) = (1 a )km (by Exercise 4.6 since k,m +) = 1 akm (by Lemma 2 ) = a(km) (by the definition of negative exponents) = a(k)m = anm.
(b)
Case: m = 0. The same argument as in case 1b above applies here as it does not depend on n being positive.
(c)
Case: m . Then m = l for some l +, and we have (an)m = (ak)l = ( 1 ak ) l (by the definition of negative exponents) = 1 (1ak)l (by the definition of negative exponents) = 1 [(1a)k]l (by Lemma 2 ) = 1 (1a)kl (by Exercise 4.6 since k,l +) = ( 1 1a )kl (by Lemma 2 ) = akl = a(k)(l) = anm.

Thus in all cases we have shown the result. □

Lastly, we show that ambm = (ab)m for all real a,b0 and m .

Proof. We have the following cases:

Case: m +. The result then follows immediately from Exercise 4.6.

Case: m = 0. Then we have ambm = a0b0 = 1 1 = 1 = (ab)0 = (ab)m by the definition of a 0 exponent.

Case: m . Then there is a k + such that m = k. Then we have

ambm = akbk = 1 ak 1 bk (by the definition of negative exponents) = (1 a )k (1 b )k (by Lemma 2 ) = (1 a 1 b )k (by Exercise 4.6 since k +) = ( 1 ab )k (by Exercise 4.1 part (m)) = 1 (ab)k (by Lemma 2 ) = (ab)k (by the definition of negative exponents) = (ab)m.

Therefore in all cases the result has been shown. □

User profile picture
2019-12-01 00:00
Comments