Exercise 1.5.5

Prove that the Diophantine equation x 2 2 y 2 = 1 has infinitely many solutions.

Answers

Proof. Note that ( x 0 , y 0 ) = ( 1 , 1 ) is a solution of x 2 2 y 2 = 1 , and ( 3 , 2 ) is a solution of x 2 2 y 2 = 1 .

If ( x , y ) satisfies x 2 2 y 2 = 1 and ( x , y ) satisfies x 2 2 y 2 = 1 , then

1 = ( x 2 2 y 2 ) ( x 2 2 y 2 ) = ( x x + 2 y y ) 2 2 ( y x + x y ) 2 ,

so that ( x x + 2 y y , y x + x y ) = ( x , y ) ( x , y ) is a solution of X 2 2 Y 2 = 1 .

We define by induction ( x n , y n ) with

( x 0 , y 0 ) = ( 1 , 1 ) , ( x n + 1 , y n + 1 ) = ( 3 , 2 ) ( x n , y n ) .

Then ( x n , y n ) is a solution of x 2 2 y 2 = 1 for all n , with

x n + 1 = 3 x n + 4 y n , y n + 1 = 2 x n + 3 y n .

This gives the solutions

( 1 , 1 ) , ( 7 , 5 ) , ( 41 , 29 ) , ( 239 , 169 ) , ( 1393 , 985 ) , ( 8119 , 5741 ) ,

Moreover, for all n , n 0 , x n > 0 , y n > 0 , thus x n + 1 = 3 x n + 4 y n > 3 x n > x n (and x 1 = 7 > x 0 = 1 ). Therefore the sequence ( x n ) n is strictly increasing, and so the solutions ( x n , y n ) are distinct. The Diophantine equation x 2 2 y 2 = 1 has infinitely many solutions. □

User profile picture
2024-06-22 19:50
Comments