Exercise 1.5.4

Prove that the Diophantine equation x 2 5 y 2 = 1 has infinitely many solutions.

Answers

newcommandQ

Since 9 2 5 × 4 2 = 1 , the equation x 2 5 y 2 = 1 has a solution

( x 1 , y 1 ) = ( 9 , 4 ) ,

which is distinct of the trivial solution ( x 0 , y 0 ) = ( 1 , 0 ) .

If ( x , y ) and ( x , y ) are solutions, then

1 = x 2 5 y 2 = ( x 5 y ) ( x + 5 y ) , 1 = x 2 5 y 2 = ( x 5 y ) ( x + 5 y ) ,

thus

1 = [ ( x 5 y ) ( x 5 y ) ] [ ( x + 5 y ) ( x + 5 y ) ] = [ ( x x + 5 y y ) 5 ( y x + x y ) ] [ ( x x + 5 y y ) + 5 ( y x + x y ) ] = ( x x + 5 y y ) 2 5 ( y x + x y ) 2 ,

so ( x x + 5 y y , y x + x y ) is a solution of our equation. Write this solution

( x x + 5 y y , y x + x y ) = ( x , y ) ( x , y ) .

We define recursively ( x n , y n ) by

( x 0 , y 0 ) = ( 1 , 0 ) ( x n + 1 , y n + 1 ) = ( x 1 , y 1 ) ( x n , y n ) for all  n .

By induction, ( x n , y n ) is a solution of x 2 5 y 2 = 1 , with

x n + 1 = 9 x n + 2 0 y n , y n + 1 = 4 x n + 9 y n .

This gives the solutions

( 1 , 0 ) , ( 9 , 4 ) , ( 1 6 1 , 7 2 ) , ( 2 8 8 9 , 1 2 9 2 ) , ( 5 1 8 4 1 , 2 3 1 8 4 ) , ( 9 3 0 2 4 9 , 4 1 6 0 2 0 ) , ( 1 6 6 9 2 6 4 1 , 7 4 6 5 1 7 6 ) ,

To prove that these solutions are distinct, we show that the sequence ( x n ) n is strictly increasing.

First, for all n , n 0 , x n > 0 and y n > 0 by trivial induction. Thus, if n > 0 ,

x n + 1 = 9 x n + 2 0 y n > 9 x n > x n ,

and x 0 = 1 < x 1 = 9 . Therefore ( x n ) n is strictly increasing. This shows that the equation x 2 5 y 2 = 1 has infinitely many solutions.

User profile picture
2024-06-22 19:47
Comments