Exercise 2.9.10

Determine the first three primes that are represented by f = ( 1 , 1 , 1 ) . For any of those primes p determine a form ( p , b , c ) that is equivalent to ( 1 , 1 , 1 ) .

Answers

Proof. If p = f ( x , y ) = x 2 + xy + y 2 , then 4 p = ( 2 x + y ) 2 + 3 y 2 , therefore p 1 ( mod 3 ) or p = 3 .

Moreover 3 = f ( 1 , 1 ) , 7 = f ( 2 , 1 ) , 13 = f ( 3 , 1 ) . Since 5 1 and 11 1 ( mod 3 ) , the primes 3 , 7 , 13 are the first three primes represented by the form f = ( 1 , 1 , 1 ) .

Take U 3 = ( 1 1 1 2 ) SL ( 2 , ) . Then

( f U 3 ) ( x , y ) = f ( x + y , x + 2 y ) = ( x + y ) 2 + ( x + y ) ( x + 2 y ) + ( x + 2 y ) 2 = 3 x 2 + 9 xy + 7 y 2

Since g = ( 3 , 3 , 1 ) is in the same Γ -orbit, because ( 3 , 3 , 1 ) = ( 3 , 9 2 × 3 , 3 9 + 7 ) , we can take the more reduced form g = ( 3 , 3 , 1 ) , given by

g 3 = f U 3 T 1 = f ( 1 0 1 1 ) = ( 3 , 3 , 1 ) .

Now take U 7 = ( 2 1 1 1 ) .

( f U 7 ) ( x , y ) = f ( 2 x + y , x + y ) = ( 2 x + y ) 2 + ( 2 x + y ) ( x + y ) + ( x + y ) 2 = 7 x 2 + 9 xy + 3 y 2 .

We can take also g 7 = ( 7 , 9 2 × 7 , 7 9 + 3 ) = ( 7 , 5 , 1 ) = f ( 2 1 1 0 ) .

Now take U 13 = ( 3 1 1 0 ) .

( f U 13 ) ( x , y ) = f ( 3 x y , x ) = ( 3 x y ) 2 + ( 3 x y ) x + x 2 = 13 x 2 7 xy + y 2 .

To conclude, the proper equivalences

( 1 , 1 , 1 ) + ( 3 , 3 , 1 ) + ( 7 , 5 , 1 ) + ( 13 , 7 , 1 )

give forms ( p , , ) properly equivalent to ( 1 , 1 , 1 ) for p = 3 , 7 , 13 . □

User profile picture
2024-06-22 20:35
Comments