Exercise 2.9.2

Determine the representation of

U = ( 6 11 13 24 )

as a power product of S and T as in Exercise 2.9.1.

Answers

Proof. We take a reduced form f whose automorphism group is { I , I } , for instance f = ( 1 , 0 , 5 ) (see Theorem 2.5.10).

Here

S = ( 0 1 1 0 ) , T = ( 1 1 0 1 ) ,

and

( a , b , c ) S = ( c , b , a ) , ( a , b , c ) T k = ( a , b + 2 ak , a k 2 + bk + c ) .

If we apply U 1 = ( 24 11 13 6 ) to f , we obtain

g = f U 1 = ( 1421 , 1308 , 301 ) .

Since g + f , if we reduce the form g as in Chapter 5, we obtain anew the reduced form f .

g 1 = g S = ( 301 , 1308 , 1421 ) , g 2 = g 1 T 2 = ( 301 , 104 , 9 ) , g 3 = g 2 S = ( 9 , 104 , 301 ) , g 4 = g 3 T 6 = ( 9 , 4 , 1 ) , g 5 = g 4 S = ( 1 , 4 , 9 ) , g 6 = g 5 T 2 = ( 1 , 0 , 5 ) .

This gives

f = ( f U 1 ) S T 2 S T 6 S T 2 = f ( U 1 S T 2 S T 6 S T 2 ) ,

therefore U 1 S T 2 S T 6 S T 2 Aut + ( f ) = { ± I } . Here S T 2 S T 6 S T 2 = U = S 2 U , thus

U = S 1 T 2 S T 6 S T 2 .

Verification :

S 1 T 2 = ( 0 1 1 0 ) ( 1 2 0 1 ) = ( 0 1 1 2 ) , S 1 T 2 S = ( 0 1 1 2 ) ( 0 1 1 0 ) = ( 1 0 2 1 ) , S 1 T 2 S T 6 = ( 1 0 2 1 ) ( 1 6 0 1 ) = ( 1 6 2 13 ) , S 1 T 2 S T 6 S = ( 1 6 2 13 ) ( 0 1 1 0 ) = ( 6 1 13 2 ) , S 1 T 2 S T 6 S T 2 = ( 6 1 13 2 ) ( 1 2 0 1 ) = ( 6 11 13 24 ) = U .
User profile picture
2024-06-22 20:12
Comments