Exercise 2.9.3

Prove that gcd ( x , y ) = gcd ( U ( x , y ) ) for ( x , y ) 2 and U GL ( 2 , ) .

Answers

Proof. Let U = ( s t u v ) SL ( 2 , ) , and d = x y = gcd ( x , y ) .

Then

( x , y ) = U ( x , y ) = ( sx + ty , ux + vy ) , ( x , y ) = U 1 ( x , y ) = ( v x t y , u x + s y ) .

Write d = gcd ( U ( x , y ) ) = x y .

Then d x , d y , thus d sx + ty = x , d ux + vy = y , therefore d x y = d .

Similarly, d x , d y , thus d v x t y = x , d u x + s y = y , therefore d x y = d .

Since d d , and d d , where d 0 , d 0 , we conclude d = d . □

User profile picture
2024-06-22 20:14
Comments