Exercise 2.9.7

Let Δ be an integer, Δ 0 , 1 ( mod 4 ) . Let ( x , y ) 2 and ( x , y ) 2 be solutions of the Pell equation x 2 y 2 Δ = ± 4 . Prove that ( x x + y y Δ , x y + x y ) is also such a solution and that U ( f , x , y ) U ( f , x , y ) = U ( f , ( x x + y y Δ ) 2 , ( x y + x y ) 2 ) for any integral primitive form f of discriminant Δ .

Answers

Proof. Write Δ a root of Δ in .

If ( x , y ) 2 and ( x , y ) 2 are solutions of the Pell equation x 2 y 2 Δ = ± 4 , then

x 2 Δ y 2 = 𝜀 4 , x 2 Δ y 2 = 𝜀 4 , 𝜀 { 1 , 1 } , 𝜀 { 1 , 1 } .

Then

𝜀 𝜀 16 = ( x 2 Δ y 2 ) ( x 2 Δ y 2 ) = [ ( x Δ y ) ( x Δ y ) ] [ ( x + Δ y ) ( x + Δ y ) ] = [ ( x x + Δ y y ) Δ ( x y + x y ) ] [ ( x x + Δ y y ) + Δ ( x y + x y ) ] = ( x x + Δ y y ) 2 Δ ( x y + x y ) 2 .

Therefore

± 4 = ( x x + Δ y y 2 ) 2 Δ ( x y + x y 2 ) 2 .

It remains to show that ( x x + Δ y y 2 , x y + x y 2 ) 2 .

If Δ 0 ( mod 4 ) , then x 2 Δ y 2 = ± 4 implies x 2 0 ( mod 4 ) , thus x is even, and similarly x is even. This shows that x x + Δ y y and x y + x y are even.
If Δ 1 ( mod 4 ) , then x 2 Δ y 2 = ± 4 implies x 2 y 2 0 ( mod 4 ) , thus x , y have the same parity, and similarly x , y have the same parity, and x x + y y Δ 2 x x 0 ( mod 2 ) , x y + x y 2 xy 0 ( mod 2 ) .

In both cases, ( x x + Δ y y 2 , x y + x y 2 ) 2 .

To conclude, ( x x + Δ y y 2 , x y + x y 2 ) is also a solution of x 2 Δ y 2 = ± 4 .

Recall that the matrix U = U ( f , x , y ) is given by (2.20):

U ( f , x , y ) = ( x yb 2 cy ay x + yb 2 ) .

Then

U ( f , x , y ) U ( f , x , y ) = 1 4 ( x by 2 cy 2 ay x + by ) ( x b y 2 c y 2 a y x + b y ) = 1 4 ( x x + ( b 2 4 ac ) y y b ( x y + x y ) 2 c ( x y + x y ) 2 a ( x y + y x ) x x + ( b 2 4 ac ) y y + b ( x y + y x ) ) = ( X Y b 2 cY aY X + Y b 2 ) ,

where

X = x x + Δ y y 2 , Y = x y + y x 2 .

This proves U ( f , x , y ) U ( f , x , y ) = U ( f , ( x x + y y Δ ) 2 , ( x y + x y ) 2 ) . □

User profile picture
2024-06-22 20:22
Comments