Exercise 3.7.1

Find an algorithm that computes F ( Δ , 0 ) .

Answers

Proof. Here a = 0 , and Δ ( a , b , c ) = b 2 .

Note that F ( 0 , b ) = { ( 0 , 0 , c ) Γ c } is infinite, since ( 0 , 0 , c ) Γ = { ( 0 , 0 , c ) } . Therefore we can assume Δ 0 .

If Δ is not a square in , then F ( Δ , 0 ) = . Assume now that Δ = δ 2 is a square of some δ , δ > 0 .

For all ( b , c ) 2 , ( 0 , b , c ) F ( Δ , 0 ) if and only if Δ ( 0 , b , c ) = b 2 = Δ , that is b 2 = δ 2 , b = ± δ , thus every ( 0 , ± δ , c ) Γ is in F ( Δ , 0 ) (but are not all distinct).

Moreover,

( 0 , b , c ) T k = ( 0 , b , bk + c ) .

Therefore every element in F ( Δ , 0 ) is given by ( 0 , ± δ , c ) , where 0 c < δ . The elements of F ( Δ , 0 ) are

( 0 , δ , 0 ) Γ , ( 0 , δ , 1 ) Γ , ( 0 , δ , 2 ) Γ , , ( 0 , δ , δ 1 ) Γ , ( 0 , δ , 0 ) Γ , ( 0 , δ , 1 ) Γ , ( 0 , δ , 2 ) Γ , , ( 0 , δ , δ 1 ) Γ , ( Δ = δ 2 , δ > 0 ) .

We show that all these elements are distinct.

If ( 0 , δ , c ) Γ = ( 0 , δ , c ) Γ , where 0 c c < δ , then 0 , δ , c ) = ( 0 , δ , c ) T k = ( 0 , δ , + c , thus c = + c , so δ c c , where 0 c c < δ , therefore c = c .

If ( 0 , δ , c ) Γ = ( 0 , δ , c ) Γ , then 0 , δ , c ) = ( 0 , δ , c ) T k = ( 0 , δ , b δ + c ) , thus δ = δ and Δ = 0 : this contradicts the hypothesis Δ 0 .

As a conclusion, if Δ 0 , then

If Δ is not a perfect square, F ( Δ , 0 ) = .
If Δ = δ 2 , δ > 0 , then R ( Δ , 0 ) = 2 δ , and F ( Δ , 0 ) = { ( 0 , δ , 0 ) Γ , ( 0 , δ , 1 ) Γ , ( 0 , δ , 2 ) Γ , , ( 0 , δ , δ 1 ) Γ , ( 0 , δ , 0 ) Γ , ( 0 , δ , 1 ) Γ , ( 0 , δ , 2 ) Γ , , ( 0 , δ , δ 1 ) Γ } .
User profile picture
2024-06-22 20:43
Comments