Exercise 3.7.2

Determine F ( Δ , 5 ) for all discriminants Δ with | Δ | 10 .

Answers

Proof. The discriminants Δ with | Δ | 10 are

8 , 7 , 4 , 3 , 1 , 4 , 5 , 8 , 9 .

(By the definition of section 3.3, 0 is not a discriminant.)

Following Proposition 3.1.1, we search all b such that

b 2 Δ ( mod 20 ) , 5 < b 5 .

The square numbers modulo 20 for 5 < b 5 are given in the following array:

b 0 ± 1 ± 2 ± 3 ± 4 5 b 2 0 1 4 9 16 5

If Δ { 8 , 7 , 3 , 8 } , Δ is not the square modulo 20 of some b such that 5 < b 5 , therefore F ( 8 , 5 ) = F ( 7 , 5 ) = F ( 3 , 5 ) = F ( 8 , 5 ) = .

If Δ = 4 , Δ 4 2 ( mod 2 ) 0 , thus b = ± 4 , and c = ( b 2 + 4 ) 4 = 5 . There are two Γ -orbits in F ( 4 , 5 ) : F ( 4 , 5 ) = { ( 5 , 4 , 5 ) Γ , ( 5 , 4 , 5 ) Γ } .

If Δ = 1 , then b = ± 1 , c = 0 . F ( 1 , 5 ) = { ( 5 , 1 , 0 ) Γ , ( 5 , 1 , 0 ) Γ } .

If Δ = 4 , b = ± 2 , c = 0 . F ( 4 , 5 ) = { ( 5 , 2 , 0 ) Γ , ( 5 , 2 , 0 ) Γ } .

If Δ = 5 , b = 5 , c = 1 . F ( 5 , 5 ) = { ( 5 , 5 , 1 ) Γ } .

If Δ = 9 , b = ± 3 , c = 0 F ( 9 , 5 ) = { ( 5 , 3 , 0 ) Γ , ( 5 , 3 , 0 ) Γ } .

User profile picture
2024-06-22 20:46
Comments