Exercise 2.2 (Polarization Identity)

Lemma 2.1 (Polarization Identity). Suppose ⟨⋅,⋅⟩ is an inner product on a vector space V . Then foral all v , w V ,

v , w = 1 4 ( v + w , v + w v w , v w ) .

Exercise 2.2. Prove the preceding lemma.

Answers

Proof. Using bilinearity several times and applying symmetry in the last step, we obtain

v + w , v + w v w , v w = v , v + w + w , v + w v , v w + w , v w = v , v + v , w + w , v + w , w v , v + v , w + w , v w , w = 2 v , w + 2 w , v = 4 v , w
User profile picture
2023-10-30 10:59
Comments