Homepage Solution manuals John Lee Introduction to Smooth Manifolds Exercise 8.29 (Properties of the Lie Bracket)

Exercise 8.29 (Properties of the Lie Bracket)

Proposition 8.28 (Properties of the Lie Bracket). The Lie bracket satisfies the following identities for all X,Y,Z 𝔛(M) :

(a)
BILINEARITY: For a,b , [aX + bY,Z] = a[X,Z] + b[Y,Z], [Z,aX + bY ] = a[Z,X] + b[Z,Y ]

(b)
ANTISYMMETRY: [X,Y ] = [Y,X]

(c)
JACOBI IDENTITY: [X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y ]] = 0.

(d)
For f,g C(M), [fX,gY ] = fg[X,Y ] + (fXg)Y (gY f)X

Answers

Bilinearity. Let a , b . Then for any f C ( M ) , we have:

[ aX + bY , Z ] f = ( aX + bY ) Zf Z ( aX + bY ) f = aXZf + bY Zf aZXf bZY f = ( aXZf aZXf ) + ( bY Zf bZY f ) = a ( XZf ZXf ) + b ( Y Zf ZY f ) = a [ X , Z ] f + b [ Y , Z ] f

Similarly, [ Z , aX + bY ] = a [ Z , X ] + b [ Z , Y ] .

Antisymmetry. For any f C ( M ) , we have:

[ X , Y ] f = XY f Y Xf = ( Y Xf XY f ) = [ Y , X ] f

Jacobi identity. For any f C ( M ) , we have:

[ X , [ Y , Z ] ] f + [ Y , [ Z , X ] ] f + [ Z , [ X , Y ] ] f = X [ Y , Z ] f [ Y , Z ] Xf + Y [ Z , X ] f [ Z , X ] Y f + Z [ X , Y ] f [ X , Y ] Zf = XY Zf XZY f Y ZXf + ZY Xf + Y ZXf Y XZf ZXY f + XZY f + ZXY f ZY Xf XY Zf + Y XZf = 0 .

Lie property. For any f , g C ( M ) and for any h C ( M ) , we have:

[ fX , gY ] h = ( ( fX ) ( gY ) ( gY ) ( fX ) ) h = ( fX ) ( gY ) h ( gY ) ( fX ) h = f ( XgY h ) + f ( gXY h ) g ( Y fXh ) g ( fY Xh ) = f ( gXY h ) g ( fY Xh ) + f ( XgY h ) g ( Y fXh ) = fg ( XY h ) gf ( Y Xh ) + f ( XgY h ) g ( Y fXh ) = fg ( ( XY h ) ( Y Xh ) ) + f ( XgY ) h g ( Y fX ) h = fg [ X , Y ] h + f ( Xg ) ( Y h ) g ( Y f ) ( Xh ) .

User profile picture
2023-05-09 13:22
Comments